Homework for January 20, 2019.

Algebra.

Review the classwork handout. Review and solve the classwork exercises which were not solved (some are repeated below). Solve the following problems.

- 1. Prove the following properties of the Cartesian product,
 - a. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - b. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - c. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
- 2. Find the Cartesian product, $A \times B$, of the following sets,
 - a. $A = \{a, b\}, B = \{\uparrow, \downarrow\}$
 - b. $A = \{June, July, August\}, B = \{1, 15\}$
 - c. $A = \emptyset, B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- 3. Describe the set of points determined by the Cartesian product, $A \times B$, of the following sets (illustrate schematically on a graph),
 - a. A = [0,1], B = [0,1] (two segments from 0 to 1)
 - b. $A = [-1,1], B = (-\infty, \infty)$
 - c. $A = (-\infty, 0], B = [0, \infty)$
 - d. $A = (-\infty, \infty), B = (-\infty, \infty)$
 - e. $A = [0,1), B = \mathbb{Z}$ (set of all integers)
- 4. Propose 3 meaningful examples of a Cartesian product of two sets.
- 5. $n_A = |A|$ is the number of elements in a set *A*.
 - a. What is the number of elements in a set $A \times A$
 - b. What is the number of elements in a set $A \times (A \times A)$
- 6. Present examples of binary relations that are, and that are not equivalence relations.
- 7. For each of the following relations, check whether it is an equivalence relation and describe all equivalence classes.
 - a. On \mathbb{R} : relation given by $x \sim y$ if |x| = |y|
 - b. On \mathbb{Z} : relation given by $a \sim b$ if $a \equiv b \mod 5$
 - c. On $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, $(x_1, x_2) \sim (y_1, y_2)$ if $x_1 + x_2 = y_1 + y_2$; describe the equivalence class of (1, 2)
 - d. Let ~ be the relation on the set of all directed segments in the plane defined by $\overrightarrow{AB} \sim \overrightarrow{A'B'}$ if ABB'A' is a parallelogram.

- e. On the set of pairs of integers, $\{(a, b), a, b \in \mathbb{Z}, b \neq 0\}$, $(a_1, b_1) \sim (a_2, b_2)$ if $a_1 b_2 = a_2 b_1$. Describe these equivalence classes. Is the set of the obtained equivalence classes countable?
- 8. Let $f: X \xrightarrow{f} Y$ be a function. Define a relation on X by $x_1 \sim x_2$ if $f(x_1) = f(x_2)$. Prove that it is an equivalence relation. Describe the equivalence classes for the equivalences defined by the following functions on \mathbb{R} .
 - a. $f(x) = x^2$: $x \sim y$ if $x^2 = y^2$.
 - **b.** $f(x) = \sin x$: $x \sim y$ if $\sin x = \sin y$.

Geometry.

Review the previous classwork notes on the method of coordinates. No new geometry problems: please try solving the unsolved problems from the last homework, which are repeated below.

Problems.

- 1. Review the solution of the radical axis of two circles problem: find the locus of points whose powers with respect to two non-concentric circles are equal. Consider situation when circles are concentric.
- 2. Complete the following exercises from class. Find the locus of points satisfying each of the following equations or inequalities (graph it on a coordinate plane).

a.
$$|x| = |y|$$

b.
$$|x| + x = |y| + y$$

- c. |x|/x = |y|/y
- d. [y] = [x]

e.
$$\{y\} = \{x\}$$

$$f. \quad x^2 - y^2 \ge 0$$

g.
$$x^2 + y^2 \le 1$$

h. $x^2 + 8x = 9 - y^2$

- 3. Describe the locus of all points (x, y) equidistant to the *X*-axis (i. e. the line y = 0) and a given point *P* (0,2) on the *Y*-axis. Write the formula relating *y* and *x* for these points.
- 4. (Skanavi 15.105) Find the (*x*, *y*) coordinates of the vertex *C* of an equilateral triangle *ABC* if *A* and *B* have coordinates *A*(1,3) and *B*(3,1), respectively.
- 5. (Skanavi 15.106) Find the (*x*, *y*) coordinates of the vertices *C* and *D* of a square *ABCD* if *A* and *B* have coordinates *A*(2,1) and *B*(4,0), respectively.

- 6. *Prove that the length of the bisector segment BB' of the angle $\angle B$ of a triangle ABC satisfies $|BB'|^2 = |AB||BC| |AB'||B'C|$.
- 7. Prove the following Ptolemy's inequality. Given a quadrilateral *ABCD*,

 $|AC| \cdot |BD| \le |AB| \cdot |CD| + |BC| \cdot |AD|$

Where the equality occurs if *ABCD* is inscribable in a circle.

- 8. Using the Ptolemy's theorem, prove the following:
 - a. Given an equilateral triangle \triangle ABC inscribed in a circle and a point Q on the circle, the distance from point Q to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
 - b. In a regular pentagon, the ratio of the length of a diagonal to the length of a side is the golden ratio, ϕ .