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Algebra.  

Recap: Elements of number theory. Eucleadean algorithm and greatest common 
divisor.  

Theorem 1 (division representation). 

∀𝑎, 𝑏 ∈ ℤ, 𝑏 > 0,∃𝑞, 𝑟 ∈ ℤ, 0 ≤ 𝑟 < 𝑏:𝑎 = 𝑏𝑞 + 𝑟 

Proof. If a is 𝑎 multiple of 𝑏, then ∃𝑞 ∈ ℤ, 𝑟 = 0 ∶ 𝑎 = 𝑏𝑞 = 𝑏𝑞 + 𝑟. Otherwise, 
if 𝑎 > 0, then  ∃𝑞 > 0 ∈ ℤ ∶ 𝑏𝑞 < 𝑎 < 𝑏(𝑞 + 1), and ∃𝑟 = 𝑎 − 𝑏𝑞 ∈ ℤ ∶ 0 < 𝑟 <
𝑏. If 𝑎 < 0, then  ∃𝑞 < 0 ∈ ℤ ∶ 𝑏(𝑞 − 1) < 𝑎 < 𝑏𝑞, and ∃𝑟 = 𝑎 − 𝑏(𝑞 − 1) ∈ ℤ ∶
0 < 𝑟 < 𝑏, which completes the proof.  

Definition. A number 𝑑 ∈ ℤ is a common divisor of two integer numbers 
𝑎, 𝑏 ∈ ℤ, if ∃𝑛,𝑚 ∈ ℤ:𝑎 = 𝑛𝑑, 𝑏 = 𝑚𝑑.  

A set of all positive common divisors of the two numbers 𝑎, 𝑏 ∈ ℤ is limited 
because these divisors are smaller than the magnitude of the larger of the two 
numbers. The greatest of the divisors, 𝑑, is called the greatest common divisor 
(𝑔𝑐𝑑) and denoted 𝑑 = (𝑎, 𝑏).  

Definition. Two integers 𝑎, 𝑏 ∈ ℤ, are called relatively prime if they have no 
common divisor larger than 1, i. e. (𝑎, 𝑏) = 1.  

Theorem 2.  ∀𝑎, 𝑏, 𝑞, 𝑟 ∈ ℤ, (𝑎 = 𝑏𝑞 + 𝑟)
 
⇒ �(𝑎, 𝑏) = (𝑏, 𝑟)�   

Proof. Indeed, if 𝑑 is a common divisor of 𝑎, 𝑏 ∈ ℤ, then ∃𝑛,𝑚 ∈ ℤ:𝑎 = 𝑛𝑑, 𝑏 =
𝑚𝑑

 
⇒ 𝑟 = 𝑎 − 𝑏𝑞 = (𝑛 −𝑚𝑞)𝑑. Therefore, 𝑑 is also a common divisor of 𝑏 

and 𝑟 = 𝑎 − 𝑏𝑞. Conversely, if 𝑑′ is a common divisor of 𝑏 and 𝑟 = 𝑎 − 𝑏𝑞, 
then ∃𝑛′,𝑚′ ∈ ℤ:𝑏 = 𝑚′𝑑′,𝑎 − 𝑏𝑞 = 𝑛′𝑑′

 
⇒ 𝑎 = (𝑛′ + 𝑚′𝑞)𝑑′, so 𝑑′ is a 

common divisor of 𝑏 and 𝑎. Hence, the statement of the theorem is valid for 
any divisor of 𝑎, 𝑏, and for 𝑔𝑐𝑑 in particular. 



Corollary 1 (Eucleadean algorithm). In order to find the greatest common 
divisor 𝑑 = (𝑎, 𝑏), one proceeds iteratively performing successive divisions, 

𝑎 = 𝑏𝑞 + 𝑟 , (𝑎, 𝑏) = (𝑏, 𝑟 ) 

𝑏 = 𝑟 𝑞1 + 𝑟1, (𝑏, 𝑟 ) = (𝑟 , 𝑟1), 

𝑟 = 𝑟1𝑞2 + 𝑟2, (𝑟 , 𝑟1) = (𝑟1, 𝑟2),  

𝑟1 = 𝑟2𝑞3 + 𝑟3, (𝑟1, 𝑟2) = (𝑟2, 𝑟3), … , 𝑟𝑛−1 = 𝑟𝑛𝑞𝑛+1 

𝑏 > 𝑟1 > 𝑟2 > 𝑟3 > ⋯𝑟𝑛 > 0
 
⇒ ∃𝑑 ≤ 𝑏,𝑑 = 𝑟𝑛 = (𝑎, 𝑏) 

The last positive remainder, 𝑟𝑛, in the sequence {𝑟𝑘} is (𝑎, 𝑏), the 𝑔𝑐𝑑 of the 
numbers 𝑎 and 𝑏. Indeed, the Eucleadean algorithm ensures that 

(𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2) = ⋯ = (𝑟𝑛−1, 𝑟𝑛) = (𝑟𝑛, 0) = 𝑟𝑛 = 𝑑 

Examples.  

a. (385,105) = (105,70) = (70,35) = (35,0) = 35 
b. (513,304) = (304,209) = (209,95) = (95,19) = (19,0) = 19 

Continued fraction representation. Using the Eucleadean algorithm, one can 
develop a continued fraction representation for rational numbers,  

𝑎
𝑏 = 𝑞 +

1

𝑞1 + 1
𝑞2 + 1

…
 + 1

𝑞𝑛 + 1
𝑞𝑛+1

 

This is accomplished by successive substitution, which gives,  

𝑎
𝑏

= 𝑞 + 𝑟 
𝑏

= 𝑞 + 1
𝑏
𝑟 

, 𝑏
𝑟 

= 𝑞1 + 𝑟1
𝑟 

= 𝑞1 + 1
𝑟 
𝑟1

, 𝑟
𝑟1 

= 𝑞2 + 1
𝑟1 
𝑟2

,…, 𝑟𝑛−1
𝑟𝑛

= 𝑞𝑛+1.  



Exercise. Show the continued fraction representations for 385
105

, 513
304

, 105
385

, 304
513

.  

Example. 105
385

= 1
385
105

= 1
3+ 1

105
70

= 1
3+ 1

1+ 1
70
35

= 1
3+ 1

1+12

.  

Corollary 2 (Diophantian equation). (𝑑 = (𝑎, 𝑏))
 
⇒ (∃ 𝑘, 𝑙 ∈ ℤ ∶ 𝑑 = 𝑘𝑎 + 𝑙𝑏)  

Proof. Consider the sequence of remainders in the Eucleadean algorithm, 
𝑟 = 𝑎 − 𝑏𝑞 , 𝑟1 = 𝑏 − 𝑟 𝑞1, 𝑟2 = 𝑟 − 𝑟1𝑞2,  𝑟3 = 𝑟1 − 𝑟2𝑞3, …, 𝑟𝑛 = 𝑟𝑛−2 − 𝑟𝑛−1𝑞𝑛. 
Indeed, the successive substitution gives, 𝑟 = 𝑎 − 𝑏𝑞 , 𝑟1 = 𝑏 − (𝑎 − 𝑏𝑞 )𝑞1 =
𝑘1𝑎 + 𝑙1𝑏, 𝑟2 = 𝑟 − (𝑘1𝑎 + 𝑙1𝑏)𝑞2 = 𝑘2𝑎 + 𝑙2𝑏, , …, 𝑟𝑛 = 𝑟𝑛−2 − (𝑘𝑛−1𝑎 +
𝑙𝑛−1𝑏)𝑞𝑛 = 𝑘𝑛𝑎 + 𝑙𝑛𝑏 = 𝑑 = (𝑎, 𝑏).  

It follows that if 𝑑 is a common divisor of 𝑎 and 𝑏, then equation 𝑎𝑥 + 𝑏𝑦 = 𝑑, 
called the Diophantian equation, has solution for integer 𝑥,𝑦 ∈ ℤ.  

Exercise. Find the representation 𝑑 = 𝑘𝑎 + 𝑙𝑏 for the pairs (385,105) and 
(513,304) considered in the above examples.  

Recap: Elements of number theory. Modular arithmetics.  

Definition. For 𝑎, 𝑏,𝑛 ∈ ℤ, the congruence relation, 𝑎 ≡ 𝑏 mod 𝑛, denotes that, 
𝑎 − 𝑏  is a multiple of 𝑛, or, ∃𝑞 ∈ ℤ,𝑎 = 𝑛𝑞 + 𝑏.  

All integers congruent to a given number 𝑟 ∈ ℤ with respect to a division by 𝑛 ∈ ℤ 
form congruence classes, [𝑟]𝑛. For example, for 𝑛 = 3, 

[0]3  =  {. . . ,−6,−3, 0, 3, 6, . . . } 

[1]3  =  {. . . ,−2, 1, 4, 7, . . . } 

[2]3  =  {. . . ,−1, 2, 5, 8, . . . } 

[3]3  =  {. . . ,−6,−3, 0, 3, 6, . . . } = [0]3 

There are exactly 𝑛 congruence classes mod 𝑛, forming set 𝑍𝑛. In the above 
example 𝑛 = 3, the set of equivalence classes is 𝑍3 = {[0]3, [1]3, [2]3}. For 
general 𝑛, the set is 𝑍𝑛 = {[0]𝑛, [1]𝑛, … , [𝑛 − 1]𝑛}, because [𝑛]𝑛 = [0]𝑛.  



One can define addition and multiplication in 𝑍𝑛 in the usual way,  

[𝑎]𝑛 + [𝑏]𝑛 = [𝑎 + 𝑏]𝑛 

[𝑎]𝑛 ∙ [𝑏]𝑛 = [𝑎 ∙ 𝑏]𝑛 

([𝑎]𝑛)𝑝 = [𝑎𝑝]𝑛, 𝑝 ∈ ℕ 

Here the last relation for power follows from the definition of multiplication.  

Exercise. Check that so defined operations do not depend on the choice of 
representatives 𝑎, 𝑏 in each equivalence class.  

Exercise. Check that so defined operations of addition and multiplication 
satisfy all the usual rules: associativity, commutativity, distributivity.  

In general, however, it is impossible to define division in the usual way: for 
example, [2]6 ∙ [3]6 = [6]6 = [0]6, but one cannot divide both sides by [3]6 to 
obtain [2]6 = [0]6. In other words, for general 𝑛 an element [𝑎]𝑛 of 𝑍𝑛 could 
give [0]𝑛 upon multiplication by some of the elements in 𝑍𝑛 and therefore would 
not have properties of an algebraic inverse, so there may exist elements in 𝑍𝑛 
which do not have inverse. In practice, this means that if we try to define an 
inverse element, [𝑟−1]𝑛, to an element [𝑟]𝑛 employing the usual relation,  
[𝑟]𝑛 ∙ [𝑟−1]𝑛 = [1]𝑛, there might be no element [𝑟−1]𝑛 in class 𝑍𝑛 satisfying this 
equation. However, it is possible to define the inverse for some special values 
of 𝑟 and 𝑛. The corresponding classes [𝑟]𝑛 are called invertible in 𝑍𝑛.  

Definition. The congruence class [𝑟]𝑛 ∈ 𝑍𝑛 is called invertible in 𝑍𝑛, if there exists 
a class [𝑟−1]𝑛 ∈ 𝑍𝑛, such that [𝑟]𝑛 ∙ [𝑟−1]𝑛 = [1]𝑛. 

Theorem. Congruence class [𝑟]𝑛 ∈ 𝑍𝑛 is invertible in 𝑍𝑛, if and only if 𝑟 and 𝑛 are 
mutually prime, (𝑟,𝑛) = 1. Or,  ∀[𝑟]𝑛, (∃[𝑟−1]𝑛 ∈ 𝑍𝑛)

 
⇔ �(𝑟,𝑛) = 1�.  

To find the inverse of [𝑎] ∈ 𝑍𝑛, we have to solve the equation, 𝑎𝑥 + 𝑛𝑦 = 1, which 
can be done using Eucleadean algorithm. Then, 𝑎𝑥 ≡ 1 mod 𝑛, and  [𝑎]−1 =  [𝑥]  .  

Examples.  

3 is invertible mod 10, i. e. in 𝑍10, because [3]10 ∙ [7]10 = [21]10 = [1]10, but is 
not invertible mod 9, i. e. in 𝑍9, because[3]9 ∙ [3]9 = [0]9 .  



7 is invertible in 𝑍15: [7]15 ∙ [13]15 = [91]15 = [1]15, but is not invertible in 𝑍14: 
[7]14 ∙ [2]14 = [14]14 = [0]14. 

Solutions to some homework problems. 

1. Problem. Write the first few terms in the following sequence (𝑛 ≥ 1),  

𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

⎩
⎨

⎧
1

1+ 1

1+ 1
1+⋯                           

                  … + 1
1+𝑥 

� = 𝑓𝑛 

a. Try guessing the general formula of this fraction for any 𝑛. 

b. Using mathematical induction, try proving the formula you 
guessed. 

Solution. 𝑛 = 1: 𝑓1 = 1
1+𝑥

;𝑛 = 2: 𝑓2 = 1
1+ 1

1+𝑥
= 1+𝑥

2+𝑥
;𝑛 = 3,𝑓3 = 1

1+ 1

1+ 1
1+𝑥

=

2+𝑥
3+2𝑥

;𝑛 = 4,𝑓4 = 1
1+ 1

1+ 1
1+ 1

1+𝑥

= 3+2𝑥
5+3𝑥

;𝑓5 = 5+3𝑥
8+5𝑥

; … .  

From the definition, we can write the recurrence, 𝑓𝑛+1 = 1
1+𝑓𝑛

. We note, that 

if 𝑓𝑛 = 𝑎𝑛+𝑏𝑛𝑥
𝑐𝑛+𝑑𝑛𝑥

 , then 𝑓𝑛+1 = 𝑐𝑛+𝑑𝑛𝑥
(𝑎𝑛+𝑐𝑛)+(𝑏𝑛+𝑑𝑛)𝑥

. Hence, in each next term, 𝑓𝑛+1, 
in the sequence, the numerator is equal to the denominator of the previous 
term, 𝑓𝑛, while the numbers in the denominator are the sums of the 
corresponding numbers in the numerator and the denominator of the 
previous term, 𝑓𝑛, thus forming the Fibonacci sequence, {𝐹𝑛} =
{1,1,2,3,5,8,13, … }. We can thus guess, 

a. 𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠:𝑓1 = 1
1+𝑥

,𝑓𝑛 = 𝐹𝑛+𝐹𝑛−1𝑥
𝐹𝑛+1+𝐹𝑛𝑥

,𝑛 > 1 

b. Base: 𝑓2 = 1+𝑥
1+2𝑥

 

Induction: Using the recurrence implied in the definition,  

𝑓𝑛+1 = 1
1+𝑓𝑛

= 1

1+𝐹𝑛+𝐹𝑛−1𝑥𝐹𝑛+1+𝐹𝑛𝑥

= 𝐹𝑛+1+𝐹𝑛𝑥
𝐹𝑛+1+𝐹𝑛+𝐹𝑛𝑥+𝐹𝑛−1𝑥

= 𝐹𝑛+1+𝐹𝑛𝑥
𝐹𝑛+2+𝐹𝑛+1𝑥

. 

2. Problem. Can you prove that, 



a.  
3+√17

2
= 3 + 2

3+ 2

3+ 2
3+⋯

 ?  

b. 1 = 3 − 2
3− 2

3− 2
3−⋯

 ?  

c.  
4

2+ 4

2+ 4
2+⋯

= 1 + 1
4+ 1

4+ 1
4+⋯

 ?  

Find these numbers? 
Solution. Consider a general continued fraction,  

𝑥 = 𝑎 +
𝑏

𝑎 + 𝑏

𝑎 + 𝑏
𝑎 + ⋯

 

If a number exists, which is equal to the above infinite continued 
fraction, then it must satisfy the equation, 𝑥 = 𝑎 + 𝑏

𝑥

 
⇔𝑥2 − 𝑎𝑥 − 𝑏 = 0

 
⇔𝑥 = 𝑎

2
± ��𝑎

2
�
2

+ 𝑏. If 𝑎 and 𝑏 are positive, then 𝑥 must also be 

positive, so 𝑥 = 𝑎
2

+ ��𝑎
2
�
2

+ 𝑏. 

a. Following the above argument with 𝑎 = 3, 𝑏 = 2, we obtain, 

𝑥 = 3
2

+ ��3
2
�
2

+ 2 = 3+√17
2

 

b. In this case, 𝑎 = 3, but 𝑏 = −2 is negative. Applying the above 
considerations naively, we obtain, 𝑥 = 3 − 2

𝑥

 
⇔𝑥2 − 3𝑥 + 2 = 0

 
⇔ (𝑥 − 1)(𝑥 − 2) = 0, i.e. there are two equally “legitimate” 
answers, 𝑥 = 1, or 𝑥 = 2. What this means, is that assumption that 
there exist unique number encoded by the given infinite continued 
fraction is wrong: there exist no such number! In fact, this can also be 
understood by looking at finite truncations approximating this 
continued fraction. If the continued fraction is truncated after 
subtracting 2 and before division by 3, then it is equal to 1, 



3 − 2
3−2

= 1, 3 − 2
3− 2

3−2
= 1, … . 

If, on the other hand, the truncation is after division by 3 and before 
subtracting 2, then we obtain a  sequence of numbers approaching 2, 

3 − 2
3

= 2 1
3
 , 3 − 2

3−23
= 2 1

7
, 3 − 2

3− 2

3−23

= 2 1
15

, … . 

c. Denote 

𝑥 =
4

2 + 4
2 + 4

2 + ⋯

=
4

2 + 𝑥 

Then, 𝑥2 + 2𝑥 − 4 = 0
 
⇔𝑥 = −1 ± √5

2
, and 𝑥 > 0.  Hence, 

𝑥 = −1 + √5
2

.  

Similarly, denote 

𝑦 =
1

4 + 1
4 + 1

4 + ⋯

=
1

4 + 𝑦 

Then, 𝑦2 + 4𝑦 − 1 = 0
 
⇔𝑦 = −2 ± √5

2
, and 𝑦 > 0.  Hence, 

𝑦 = −2 + √5
2

, and 1 + 𝑦 = −1 + √5
2

= 𝑥.  

 

 


