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Algebra.  

Elements of Set Theory.  

Definition. We will define a set to be a group of objects (not necessarily 

ordered) with no duplicates.  

Note that the objects in the sets can themselves be sets. We can describe a set 

by defining some property of objects in it. For example,  

1. the set containing the positive integers from 1 to 5 is              
2. the set of all natural integers, which we denote    
3. the set of all integer numbers, which we denote    

4. the set of all rational numbers, 
 

 
,              , which we 

denote   
5. the set of all real numbers, which we denote   
6. the set of all irrational numbers, which we denote   

If a set has finite number of objects, it is said to be finite. Otherwise, it is 

infinite. The number of elements,  , in a finite set  , is denoted      . If 

elements in the set can be counted by assigning a natural integer to each 

element, the set is called countable. The set that is not countable is called 

uncountable.  

Exercise. Give examples of infinite, countable, uncountable sets. 

If we wish to describe an infinite set, such as the set of even positive integers, 

we use what is called “set builder notation”.  

                                     

This is read verbally as “the set of all   such that   is integer and greater than 
0 and   divided by 2 is also integer”.  Another example,   

                                      



“  is the set of all numbers of the form       , such that   is a whole number 
in the range from   to    inclusive”  where the colon “ ” is read “such that”.   

If   is a member of a set  , we will use notation    , if   is not a member of 
a set   we will write    . For example statement “      ” can be 
written as        .  Another example: If     and    , so          
      

 
         . 

Exercise. Find the set of all values of   for which the following expression 

makes sense:        
 

   
. 

The algebra of sets.  

An algebraic structure (algebra) is formed by a set of objects supplemented by 
a set of operations, which act on the elements of this set and obey certain 
algebraic laws. Typical example of an algebra are binary operations of 
addition and multiplication on a set of real, or integer numbers, which 
combine two elements to produce a third. These operations obey certain laws, 
such as commutative, associative, and distributive. Another example would be 
a set of all possible rotations of a solid body, with multiplication defined as 
combination of two consecutive rotations (Lie algebra, it is associative, but 
not commutative). The algebra of sets is an algebraic structure consisting of 
operations on sets (the elements of the set of sets).  

Definition. An identity element (or neutral element) with respect to a binary 
operation on a set is an element of that set, which leaves other elements 
unchanged when combined with them. An identity with respect to binary 
addition is called an additive identity (often denoted as 0) and an identity in 
the case of multiplication a multiplicative identity (often denoted as 1).   

Definition. The empty set (or null set) is the set which contains no objects and 
is denoted {}, or by the symbol .  

Definition. The universal set   (the Universe of discourse) is the set which 
contains all objects of any nature, and of which all other sets are subsets.  

In the algebra of sets, the empty set and the universal set play roles of the 
additive and the multiplicative identity, respectively. 



Definition. The set   is said to be a subset of the set   if there is no element in 
  that is not also in  . It is denoted by    , or    .  

Exercise. Let   be a finite set, with the number of elements        . How 

many different subsets does   have (including the empty subset and   itself)? 

Comparing sets.  

If both statement       and      hold, then sets   and   are equal,    . In 
this case sets   and   contain exactly the same elements. The relation       
has some similarities with the       relation between the real numbers. In 
particular, the following set comparison rules hold: 

1.       
2. If       and       then     
3. If       and       then       
4.       for any set   
5.       for any set   

The difference between the order relation       between sets and the   
relation between real numbers is that for numbers either      , or       
always holds, while this is not necessarily the case for sets order relation.  

Definition. The union of two sets   and   is the set of elements, which are in   
or in   or in both. It is denoted by       and is read ‘  union  ’.  

Definition. The intersection of two sets   and   is the set of elements, which 
are in   and in  . It is denoted by     and is read ‘  union  ’.  

We can associate the union with the “logical sum” of sets   and  ,  

       , 

and the intersection with the “logical product”  

         . 

Using these definitions, it can be easily verified that these operations satisfy 
the following rules. 



6.         
7.         
8.                 
9.                 
10.       
11.       
12.                   
13.                     
14.       
15.       
16.       
17.      
18.       is equivalent to either of the two,      , or       

Definition. The complement of set   in   is the set   , which consists of all 
objects in   which are not in  .  

The operation of obtaining a complement    has no analogs in the algebra of 
numbers, and possesses the following properties. 

19.        
20.        
21.       
22.     
23.       
24.        

 
          

25.               
26.               

These 26 laws of the algebra of sets possess an interesting duality symmetry: 
if we interchange    and , + and  , and  and  , the same set of rules is 
obtained. Each of the 26 relations transforms in some other of these relations.  

Exercise. Verify the above stated duality.  

It is also remarkable from the point of view of the axiomatic constructions 
that all the above 26 laws, as well as all other theorems of set algebra can be 
deduced from the following three equation adopted as axioms, much like the 
Euclidian geometry.  



1.         
2.                 
3.                    

The operations     and       are then defined by:              and 
      means that      .  

Exercise. Verify that all 26 rules of the set algebra can be obtained from the 
three axioms stated above. 

Example. An algebraic structure satisfying all laws of the algebra of sets is 
provided by a set of eight numbers, {1,2,3,5,6,10,15,30}, where addition is 
identified with obtaining the least common multiple, multiplication with the 
greatest common divisor,       to mean “  is a factor of  ”  and        ,  

               
              
                   
        . 

Exercise. Verify that thus obtained algebra satisfies all rules of set algebra.  

We observe that laws of the algebra of sets look similar to the laws of 
propositional logic and predicate calculus, if we identify 

       , with conjunction   ND     B  

         with disjunction  OR    ∨B 

   with negation (NOT),    

    with    ,     with    .  

This is because any subset of a universal set can be defined using a predicate.  

  



A B

C

Definition. For two sets  ,  , their difference     (sometimes notation     

is used instead of    ) is defined by,  

                            

The following properties can be shown to hold (consider Venn 

diagrams), 

                , but in general,                 

Definition. The symmetric difference of two sets is,  

                

This operation is commutative and associative, 

        

                

Definition. For a set  , the characteristic function    is defined as follows, 

       
        
         

  

Exercise. Show that     has following properties 

          

            

                                                       

Exercise. Write a formula for       ;         .  

  

A B

A B



Recap: Elements of number theory. Eucleadean algorithm and greatest common 

divisor.  

Theorem 1 (division representation). 

                               

Proof. If a is   multiple of  , then                   . Otherwise, 

if    , then                    , and               

 . If    , then                    , and               

     , which completes the proof.  

Definition. A number     is a common divisor of two integer numbers 

     , if                 .  

A set of all positive common divisors of the two numbers       is limited 

because these divisors are smaller than the magnitude of the larger of the two 

numbers. The greatest of the divisors,  , is called the greatest common divisor 

      and denoted        .  

Definition. Two integers      , are called relatively prime if they have no 

common divisor larger than 1, i. e.        .  

Theorem 2.                     
 

                 

Proof. Indeed, if   is a common divisor of      , then               

  
 

               . Therefore,   is also a common divisor of   

and       . Conversely, if    is a common divisor of   and       , 

then                          
 

             , so    is a 

common divisor of   and  . Hence, the statement of the theorem is valid for 

any divisor of    , and for     in particular. 

Corollary 1 (Eucleadean algorithm). In order to find the greatest common 

divisor        , one proceeds iteratively performing successive divisions, 

                      



                          

                             

                                         

                
 

                 

The last positive remainder,   , in the sequence      is      , the     of the 

numbers   and  . Indeed, the Eucleadean algorithm ensures that 

                                             

Examples.  

a.                                      

b.                                                

Continued fraction representation. Using the Eucleadean algorithm, one can 

develop a continued fraction representation for rational numbers,  

 

 
    

 

   
 

   
 

 

  
 

   
 

    

 

This is accomplished by successive substitution, which gives,  

 

 
    

  

 
    

 
 

  

, 
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     .  

Exercise. Show the continued fraction representations for 
   

   
, 
   

   
, 
   

   
, 
   

   
.  

Example. 
   

   
 

 
   

   

 
 

  
 

   
  

 
 

  
 

  
 
  
  

 
 

  
 

  
 
 

.  



Corollary 2 (Diophantian equation).          
 

                    

Proof. Consider the sequence of remainders in the Eucleadean algorithm, 

        ,          ,           ,        
     ,                  . 

Indeed, the successive substitution gives,         ,                

       ,                          ,                     

                        .  

It follows that if   is a common divisor of   and  , then equation        , 

called the Diophantian equation, has solution for integer      .  

Exercise. Find the representation         for the pairs           and 

          considered in the above examples.  

Recap: Elements of number theory. Modular arithmetics.  

Definition. For        , the congruence relation,     mod  , denotes that, 
     is a multiple of  , or,            .  

All integers congruent to a given number     with respect to a division by     
form congruence classes,     . For example, for    , 

        . . .              . . .   

        . . .           . . .   

        . . .           . . .   

        . . .              . . .        

There are exactly   congruence classes mod  , forming set   . In the above 
example    , the set of equivalence classes is                    . For 
general  , the set is                        , because          .  

One can define addition and multiplication in    in the usual way,  

                 

                 



                  

Here the last relation for power follows from the definition of multiplication.  

Exercise. Check that so defined operations do not depend on the choice of 
representatives     in each equivalence class.  

Exercise. Check that so defined operations of addition and multiplication 
satisfy all the usual rules: associativity, commutativity, distributivity.  

In general, however, it is impossible to define division in the usual way: for 
example,                    , but one cannot divide both sides by      to 
obtain          . In other words, for general   an element      of    could 
give      upon multiplication by some of the elements in    and therefore would 
not have properties of an algebraic inverse, so there may exist elements in    
which do not have inverse. In practice, this means that if we try to define an 
inverse element,       , to an element      employing the usual relation,  
                , there might be no element        in class    satisfying this 
equation. However, it is possible to define the inverse for some special values 
of   and  . The corresponding classes      are called invertible in   .  

Definition. The congruence class         is called invertible in   , if there exists 
a class          , such that                 . 

Theorem. Congruence class         is invertible in   , if and only if   and   are 

mutually prime,        . Or,                    
 

          .  

To find the inverse of        , we have to solve the equation,        , which 
can be done using Eucleadean algorithm. Then,      mod  , and              .  

Examples.  

3 is invertible mod   , i. e. in    , because                         , but is 
not invertible mod  , i. e. in   , because               .  

7 is invertible in    :                          , but is not invertible in    : 
                        . 

 


