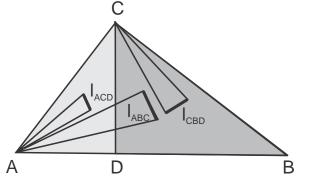
Geometry.

Generalized Pythagorean Theorem (continued).

Theorem 2. For three homologous segments, l_{ABC} , l_{CBD} and l_{ACD} belonging to the similar right triangles *ABC*, *CBD* and *ACD*, where *CD* is the altitude of the triangle *ABC* drawn to its hypotenuse *AB*, the following holds,



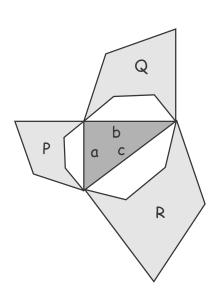
 $l_{ACD}^2 + l_{CBD}^2 = l_{ABC}^2$

Proof. If we square the similarity relation for the homologous segments, $\frac{l_{CBD}}{a} = \frac{l_{ACD}}{b} = \frac{l_{ABC}}{c}$, where a = |BC|, b = |AC| and c = |AB| are the legs and the hypotenuse of the triangle *ABC*, we obtain, $\frac{l_{CBD}^2}{a^2} = \frac{l_{ACD}^2}{b^2} = \frac{l_{ABC}^2}{c^2}$. Using the property of a proportion, we may then write, $\frac{l_{ACD}^2 + l_{CBD}^2}{a^2 + b^2} = \frac{l_{ABC}^2}{c^2}$, wherefrom, by Pythagorean theorem for the right triangle *ABC*, $a^2 + b^2 = c^2$, we immediately obtain $l_{ACD}^2 + l_{CBD}^2 = l_{ABC}^2$.

Theorem 1. If three similar polygons, P, Q and R with areas S_P , S_Q and S_R are constructed on legs a, b and hypotenuse c, respectively, of a right triangle, then,

$$S_P + S_Q = S_R$$

Proof. The areas of similar polygons on the sides of a right triangle satisfy $\frac{S_R}{S_P} = \frac{c^2}{a^2}$ and $\frac{S_R}{S_Q} = \frac{c^2}{b^2}$, or, $\frac{S_P}{a^2} = \frac{S_Q}{b^2} = \frac{S_R}{c^2}$. Using the property of a proportion, we may then write, $\frac{S_P + S_Q}{a^2 + b^2} = \frac{S_R}{c^2}$, wherefrom, using the



Pythagorean theorem for the right triangle *ABC*, $a^2 + b^2 = c^2$, we immediately obtain $S_P + S_Q = S_R$.

Selected problems on similar triangles.

Problem 1 (homework problem #4). In the isosceles triangle *ABC* point *D* divides the side *AC* into segments such that |AD|: |CD| = 1: 2. If CH is the altitude of the triangle and point 0 is the intersection of *CH* and *BD*, find the ratio |OH| to |CH|.

Solution. First, let us perform a supplementary construction by drawing the segment *DE* parallel to *AB*, *DE* ||*AB*, where point *E* belongs to the side *CB*, and point *F* to *DE* and the altitude *CH*. Notice the similar triangles, $AOH \sim DOF$, which implies, $\frac{|OF|}{|OH|} = \frac{|DF|}{|AH|}$. By Thales theorem, $\frac{|AH|}{|DF|} = \frac{|AC|}{|AD|} = 1 + \frac{|CD|}{|AD|} = \frac{3}{2}$, and $\frac{|OF|}{|OH|} = \frac{|DF|}{|AH|} = \frac{2}{3}$, so that $\frac{|FH|}{|OH|} = \frac{|FO| + |OH|}{|OH|} = \frac{5}{3} \cdot \frac{|CH|}{|OH|} = \frac{|CH|}{|FH|} |OH| = 3 \cdot \frac{5}{3} = 5$, because $\frac{|CH|}{|FH|} = 1 + \frac{|CF|}{|FH|} = 1 + \frac{|CD|}{|DA|}$. Therefore, the sought ratio is, $\frac{|OH|}{|CH|} = \frac{1}{5}$.

Problem 2 (homework problem #5). In a trapezoid *ABCD* with the bases |AB| = a and |CD| = b, segment *MN* parallel to the bases, *MN* ||*AB*, connects the opposing sides, $M \in [AD]$ and $N \in [BC]$. *MN* also passes through the intersection point *O* of the diagonals, *AC* and *BD*, as shown in the Figure. Prove that $|MN| = \frac{2ab}{a+b}$.

A

С

В

Solution. By Thales theorem applied to vertical angles *AOB* and *DOC* and parallel lines *AB* and *CD*, $\frac{|AM|}{|MD|} = \frac{|BN|}{|NC|} = \frac{|AB|}{|DC|} = \frac{a}{b}$. Consequently, $\frac{|AD|}{|MD|} = \frac{|AM| + |MD|}{|MD|} = \frac{a}{b} + 1 = \frac{|BN| + |NC|}{|NC|} = \frac{|BC|}{|NC|}$. Now, applying the same Thales theorem to angles *ADB* and *ACB* and parallel lines *MN* and *AB*, we obtain, $\frac{|MO|}{|AB|} = \frac{|MD|}{|AD|} = \frac{1}{\frac{a}{b}+1}$ and $\frac{|ON|}{|AB|} = \frac{|NC|}{|BC|} = \frac{1}{\frac{a}{b}+1}$. Hence, $\frac{|MO|}{|AB|} + \frac{|ON|}{|AB|} = \frac{|MN|}{|AB|} = \frac{2}{\frac{a}{b}+1}$, and $|MN| = \frac{2ab}{a+b}$.