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Geometry.   

Commensurate and incommensurate segments.  The Euclidean 
algorithm. 

Definition. Two segments, 𝑎 and 𝑏, are 
commensurate if there exists a third 
segment, 𝑠, such that it is contained in each 
of the first two segments a whole numbers of 
times with no remainder.  

𝑎, 𝑏 𝑎𝑟𝑒 𝑐𝑜𝑚𝑚𝑒𝑛𝑠𝑢𝑟𝑎𝑡𝑒
 
∃𝑠, 𝑛,𝑚 ∈ 𝑁: 𝑎 = 𝑛𝑠 ∧ 𝑏 = 𝑚𝑠  

The segment 𝑠 is called a common measure of the segments 𝑎 and 𝑏. The 
concept of commensurability is similar to that of the common divisor for 
integers. It can be extended to any two quantities of the same denomination – 
two angles, two arcs of the same radius, or two weights. 

The greatest common measure.   

If a common measure 𝑠 of two segments 𝑎 and 𝑏 is sub-divided into two, three, 
or, generally, any number of equal smaller segments, these smaller segments 
are also common measures of the segments 𝑎 and 𝑏. In this way, an infinite set 

of common measures, decreasing in length, can be obtained, !
!
, 𝑝 ∈ 𝑁 . Since 

any common measure is less than the smaller segment, 𝑠 ≤ 𝑏, there must be 
the largest among the common measures, which is called the greatest 
common measure.  

Finding the greatest common measure (GCM) is done by the method of 
consecutive exhaustion called Euclidean algorithm. It is similar to the 
method of consecutive division used for finding the greatest common divisor 
in arithmetic. The method is based on the following theorem.  

Theorem. Two segments  𝑎 and 𝑏 are commensurate, if and only if the 
smaller segment, 𝑏, is contained in the greater one a whole number of times 
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with no remainder, or with a remainder, 𝑟 < 𝑏, which is commensurate with 
the smaller segment, 𝑏.  

 ∃𝑛 ∈ 𝑁: 𝑎 = 𝑛𝑏 + 𝑟 ∧ 𝑟 = 0 ∨ ∃𝑠, 𝑝, 𝑞 ∈ 𝑁: 𝑏 = 𝑝𝑠 ∧ 𝑟 = 𝑞𝑠 .  

The greatest common measure of two segments is also the greatest common 
measure of the smaller segment and the remainder, or there is no remainder.  

Proof.  First, consider the necessary condition. Let 𝑎 and 𝑏 be commensurate, 
∃𝑠, 𝑛,𝑚 ∈ 𝑁: 𝑎 = 𝑛𝑠 ∧ 𝑏 = 𝑚𝑠 , and 𝑎 > 𝑏. Let 𝑠 be their greatest 

common measure.  Then, either 𝑠 = 𝑏 (𝑚 = 1) and segment 𝑏 is contained in 
𝑎 a whole number of times with no remainder, being the GCM of the two 
segments, or, ∃𝑘 ∈ 𝑁: 𝑎 = 𝑘𝑏 + 𝑟, 0 < 𝑟 < 𝑏. Then, 𝑎 = 𝑛𝑠 = 𝑘𝑏 + 𝑛 − 𝑘𝑚 𝑠, 
where 𝑚 < 𝑘𝑚 < 𝑛, and, therefore, 𝑟 = 𝑞𝑠, 𝑞 = 𝑛 − 𝑘𝑚 ∈ 𝑁, which shows 
that 𝑟 and 𝑏 are commensurate. The sufficiency follows from the observations 
that (i) if segment 𝑏 is contained in 𝑎 a whole number of times with no 
remainder, then the segments are commensurate, and 𝑏 is the greatest 
common measure of the two, while (ii) if 𝑎 = 𝑘𝑏 + 𝑟, and 𝑏 and 𝑟 are 
commensurate with the greatest common measure 𝑠, ∃ 𝑝, 𝑞 ∈ 𝑁: 𝑏 = 𝑝𝑠 ∧
𝑟 = 𝑞𝑠 , then 𝑎 = 𝑘𝑝 + 𝑞 𝑠 = 𝑛𝑠,𝑛 = 𝑘𝑝 + 𝑞 ∈ 𝑁, and 𝑎 and 𝑏 are also 

commensurate with the same GCM.  

The Euclidean algorithm. 

In order to find the GCM of the two segments, 𝑎 and 𝑏, we can proceed as 
follows. First, using a compass exhaust the greater segment, marking on it the 
smaller segment as many times as possible, until the remainder is smaller 
than the smaller segment, 𝑏, or there is no remainder. According to 
Archimedes’ exhaustion axiom, these are the only two possible outcomes. 
Following the above theorem, the problem now reduces to finding the GCM of 
this remainder, 𝑟!, and the smaller segment, 𝑏. We now repeat the same 
procedure, exhausting segment 𝑏 with 𝑟!, and again, there is either no 
remainder and 𝑟! is the GCM of 𝑎 and 𝑏, or there is a remainder 𝑟! < 𝑟!. The 
problem is then reduced to finding the GCM of a pair of even smaller 
segments, 𝑟!and 𝑟!, and so on. If segments 𝑎 and 𝑏 are commensurate and 



their GCM, 𝑠, exists, then this process will end after some number of steps, 
namely, on step 𝑛 where 𝑟! = 𝑠. Indeed, all remainders in this process are 
multiples of 𝑠, ∀𝑚: 𝑟! = 𝑝!𝑠, 𝑝! ∈ 𝑁 and 𝑝! > 𝑝! > ⋯ > 𝑝! > ⋯ is the 
decreasing sequence of natural numbers, which necessarily terminates, since 
any non-empty set of positive integers has the smallest number (“principle of 
the smallest integer”). If the procedure never terminates, then segments 𝑎 and 
𝑏 have no common measure and are incommensurate. 

Example.  The hypotenuse of an isosceles right triangle is incommensurate to 
its leg. Or, equivalently, the diagonal of a square is incommensurate to its side.  

Proof. Consider the isosceles right triangle 
ABC shown in the Figure. Because the 
hypotenuse is less than twice the leg by the 
triangle inequality, the leg can only fit once in 
the hypotenuse, this is marked by the segment 
AD. Let the perpendicular to the hypotenuse at 
point D intercept leg BC at point E. Triangle 
BDE is also isosceles. This is because angles BDE and DBE supplement equal 
angles ADB and ABD to 90 degrees, and therefore are also equal. Triangle CDE 
is an isosceles right triangle, similar to ABC. Its leg |DC|=|AC|-|AB|=|DE|=|BE| 
is a remainder of subtracting the leg |AB|=|AD| from the hypotenuse, |AC|, 
while the hypotenuse, |CE| =|BC|-|BE|=|BC|-|DC|, is the remainder of 
subtracting this remainder from the leg |AB|=|BC|. Hence, on the second step 
of the Euclidean algorithm we arrive at the same problem as the initial one, 
only scaled down by some overall factor. Obviously, this process never ends, 
and therefore the hypotenuse |AC| and the leg |AB| are incommensurate.  
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Thales	of	Miletus	

Born	c.	624	BC		

Died	c.	546	BC		

Era	Pre-Socratic	
philosophy	

Thales (intercept) theorem. Similarity and related concepts.  

Megiston topos: hapanta gar chorei (Μέγιστον τόπος· άπαντα γαρ χωρεί) 

”Space is the greatest thing, as it contains all things”  

Thales of Miletus (/ˈθeɪliːz/; Greek: Θαλῆς (ὁ 
Μιλήσιος), Thalēs; c. 624 – c. 546 BC) was a pre-
Socratic Greek philosopher from Miletus in Asia Minor, 
and one of the Seven Sages of Greece. Many, most 
notably Aristotle, regards him as the first philosopher 
in the Greek tradition.  

Thales was probably the first to introduce the 
scientific method into public discourse. He 
attempted to explain natural phenomena without 
reference to mythology and was tremendously 
influential in this respect. Thales' rejection of 
mythological explanations became an essential idea for 
the scientific revolution. He was also the first to define 
general principles and set forth hypotheses, 
and as a result has been dubbed the "Father of Science". 
Aristotle reported Thales' hypothesis about the nature 
of matter – that the originating principle of nature was 

a single material substance: water, the first materialist  philosophy.  

In mathematics, Thales is known for his contribution to geometry, both 
theoretical as well as practical. Thales understood similar triangles and right 
triangles, and used that knowledge in practical ways to solve problems such 
as calculating the height of pyramids and the distance of ships from the shore. 
The story is told that he measured the height of the pyramids by their 
shadows at the moment when his own shadow was equal to his height. He is 
also credited with the first use of deductive reasoning applied to geometry, by 
deriving four corollaries to Thales' Theorem. As a result, he has been hailed as 
the first true mathematician.  

  



Thales (intercept) theorem.  

Thales' intercept theorem (not to be confused with another theorem with that 
name, which is a particular case of the inscribed angle theorem) is an 
important theorem in elementary geometry about the ratios of various line 
segments that are created if two intersecting lines are intercepted by a pair of 
parallels. It is equivalent to the theorem about ratios in similar triangles.  

Theorem 1. Let parallel lines AA’, BB’, CC’ and 
DD’ intercept the sides of an angle AOA’ such that 
segments AB and CD on one side of the angle are 
congruent, |AB| = |CD|. Then the corresponding 
segments formed at the intersection of these lines 
with the other side of the angle are also 
congruent, |A’B’|=|C’D’|, Fig. 1(a).  

Proof.  Draw lines A’B’’ and C’D’’ parallel to the 
side OA, such that AA’B’’B and CC’D’’D are 
parallelograms, Fig. 1(b). By the property of a 
parallelogram, |AB|=|A’B’’|, and |CD|=|C’D’’|. 
Angles B’A’B’’ and D’C’D’’ and A’B’’B’ and C’D’’D’ 
are formed by the parallel lines and therefore are 
congruent. Hence, triangles A’B’’B’ and C’D’’D’ are 
congruent, and therefore |A’B’|=|C’D’|. 

Theorem 2. Let the sides of an angle AOA’ be intercepted by two parallel 
lines AA’ and BB’, Fig. 2. Then, for the segments obtained by these 
intersections, the following holds.  

1. The ratios of any 2 segments on the first line, 
OA, equal the ratios of the corresponding 
segments on the second line, OA’,  
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.  

2. The ratio of the 2 segments on the same line 
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starting at O equals the ratio of the segments on the parallels,  

 |!"|
|!"|

= |!!!|
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.  

3. The converse of the first statement is true as well, i.e. if the 2 intersecting 
lines forming the sides of an angle with the vertex O are intercepted by 2 
arbitrary lines at points A, B on one side and A’, B’ on the other, such that 
|!"|
|!"|

= |!!!|
|!!!|

 holds, then the 2 intercepting lines are parallel. However, the 
converse of the second 
statement is not true.  

4. If you have more than 2 lines 
intersecting in O, then ratio of 
the 2 segments on a parallel 
equals the ratio of the 
according segments on the 
other parallel. Several 
examples of parallel lines 
configurations are shown in 
the Figure.  
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.  

Proof.  We shall prove the statement 1 above, the rest follows 
straightforwardly.  

According to Thales Theorem (Theorem 1 above), the intercept points of a set 
of parallel lines passing through the endpoints of an equal length segments on 
one side of an angle form a set of equal-length segments on the other side of 
the same angle. Consider the situation where 
parallel lines AA’ and BB’ intercept angle AOA’, 

and assume that |!"|
|!"|

= |!!!!|
|!!!|

 does not hold. For 

definitiveness, let us assume that |!"|
|!"|

> |!!!!|
|!!!|

. 

Then, there exists point B’’ belonging to the side 
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OA’, such that |OB”|>|OB|, and |!"|
|!"|

= |!!!!!|
|!!!|

.  

Let us draw a set of lines parallel to AA’ and BB’, such that they divide segment 
OA’ into a set of congruent segments of length 𝑙 < |B’B’’|. If we continue these 
lines past point A, there are two possibilities. Either segments OA’ and OB’ are 
commensurate and 𝑙 is their common measure, then one of the lines must 
coincide with BB’, or, the first such line passing farther from O than BB’ is CC’, 
and |OC’|<|OB’’|.  

In the first case, both OA and OB and AA’ and BB’ are divided into an equal 

number of congruent segments, and, therefore,  |!"|
|!"|

= |!!!!|
|!!!|

 holds. In the 

second case, because all segments obtained at the intercepts of these lines 

with the sides of the angle are respectively congruent, |!"|
|!"|

= |!!!!|
|!!!|

. On the 

other hand, by construction we have |AC|>|AB| and |A’C’|<|A’B’’|, so 
|!!!!!|
|!!!|

> |!!!!|
|!!!|

= |!"|
|!"|

> |!"|
|!"|

, which contradicts our assumption. Another way to 

note a contradiction with our assumptions is |!"|
|!"|

< |!"|
|!"|

= |!!!!|
|!!!|

< |!!!!!|
|!!!|

= |!"|
|!"|

. 

Hence, |!"|
|!"|

= |!!!!|
|!!!|

 must hold.  

Consequently, |!"|
|!"|

= 1 +  |!"|
|!"|

= 1 + |!!!!|
|!!!|

= |!!!|
|!!!|

 also holds.  

Exercise. Prove claim 2 of the theorem, i. e. 
|!"|
|!"|

= |!!!|
|!!!|

= |!!!|
|!!!|

.  

Hint: draw line B’B’’ parallel to OB and apply 
the claim 1 proven above to the obtained 
segments on the angle OA’A.  
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Heuristic Alternate Proof of Thales Theorem 

claim 1 

 

Due to heights of equal length (  ) we have 
and therefore . This yields 

and  

Plugging in the actual formula for triangle areas (!"#$∙!!"#!!
!

) transforms 

that into |!"|
|!"|

∙ |!"|
|!"|

= |!"|
|!"|

∙ |!"|
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⋀ |!"|
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∙ |!"|
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∙ |!"|
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Cancelling the common factors results in: 

(a) |!"|
|!"|

= |!"|
|!"|

 and (b) |!"|
|!"|

= |!"|
|!"|

. 

Now use (b) to replace | SA | and | SC | in (a):
 |!"|∙|!"||!"|

|!"|
=

 |!"|∙|!"||!"|

|!"|
  

Using (b) again this simplifies to: (c) |!"|
|!"|

= |!"|
|!"|

  

claim 2 



 

Draw an additional parallel to SD through A. This parallel intersects BD 
in G. Then you have | AC | = | DG | and due to claim 1 |!"|

|!"|
= |!"|

|!"|
 and 

therefore |!"|
|!"|

= |!"|
|!"|

. 

claim 3 

 

Assume AC and BD are not parallel. Then the parallel line to AC through 
D intersects SA in . Since | SB | : | SA | = | SD | : | SC | is true, we 
have 

𝑆𝐵 =
|𝑆𝐷| ∙ |𝑆𝐴|
|𝑆𝐶|

 

and on the other hand from claim 2 we have 
𝑆𝐵! = |!"|∙|!"|

|!"|
. So 𝐵 and 𝐵! are on the same side of S and have the 

same distance to S, which means 𝐵 = 𝐵!. This is a contradiction, so the 
assumption could not have been true, which means AC and BD are 
indeed parallel  

claim 4 

Can be shown by applying the intercept theorem for 2 lines. 



Related Concepts 

Parallel  Lines in Triangles and Trapezoids 

The intercept theorem can be used to prove that a certain construction yields 
a parallel line (segment). 

If the midpoints of 2 triangle sides are 
connected then the resulting line 
segment is parallel to the 3rd triangle 
side. 

 

If the midpoints of 2 the non parallel 
sides of a trapezoid are connected, then 
the resulting line segment is parallel to 
the other 2 sides of the trapezoid. 

 

Similarity and similar Triangles 

 

Arranging 2 similar triangles, so that the intercept theorem can be applied 

The intercept theorem is closely related to similarity. In fact it is equivalent to 
the concept of similar triangles, i.e. it can be used to prove the properties of 
similar triangles and similar triangles can be used to prove the intercept 
theorem. By matching identical angles you can always place 2 similar triangles 
in one another, so that you get the configuration in which the intercepts 
applies and vice versa the intercept theorem configuration contains always 2 
similar triangles.  
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Algebraic formulation of Compass and Ruler Constructions 

There are 3 famous problems in elementary geometry, which were posed by 
the Greek in terms of Compass and straightedge constructions. 

1. Trisecting the angle 
2. Doubling the cube 
3. Squaring the circle 

Their solution took more than 2000 years until all 3 of them finally were 
settled in the 19th century using algebraic methods that had become available 
during that period of time. In order to reformulate them in algebraic terms 
using field extensions, one needs to match field operations with compass and 
straightedge constructions. In particular it is important to assure that for 2 
given line segments, a new line segment can be constructed such that its 
length equals the product of lengths of the other two. Similarly one needs to 
be able to construct, for a line segment of length d, a new line segment of 
length d − 1. The intercept theorem can be used to show that in both cases the 
construction is possible. 

Construction of a product 

 

Construction of an Inverse 

 

Dividing a l ine segment in a given ratio 



To divide an arbitrary line segment 
in a m:n ratio you draw an 

arbitrary angle in A with as one 
leg. One other leg you construct m + 
n equidistant points, then you draw 
line through the last point and B and 
parallel line through the mth point. 
This parallel line divides in the 
desired ratio. The graphic to the right 
shows the partition of a line sgement 

in a 5:3 ratio.  

Applications to Measuring/Survey 

Height of the Cheops Pyramid 

 

 

According to some historical sources the Greek mathematician Thales applied 
the intercept theorem to determine the height of the Cheops' pyramid. The 
following description illustrates the use of the intercept theorem to compute 
the height of the Cheops' pyramid, it does however not recount Thales' 
original work, which was lost. 

He measured length of the pyramid's base and the height of his pole. Then at 
the same time of the day he measured the length pyramid's shadow and the 
length of the pole's shadow. This yields him the following data to work with: 

• height of the pole (A): 1.63m 
• shadow of the pole (B): 2m 

Figures illustrate measuring pieces and computing C and D 

	



• length of the pyramid base: 230m 
• shadow of the pyramid: 65m 

From this he computed 

 

Knowing A,B and C he was now able to apply the intercept theorem to 
compute 

 

Measuring the Width of a River 

The intercept theorem 
can be used determine a 
distance that cannot be 
measured directly, such 
as the width of a river or 
a lake, tall buildings or 
similar. The graphic to 
right illustrates the 
measuring of the width 
of a river. The segments 
|CF | , |CA | , |FE | are 
measured and used to 
compute the wanted distance |𝐴𝐵| = |!"||!"|

|!"|
.  


