Math 7: Handout 14 Vieta Formulas.

Vieta formulas

If an equation p(x) = 0 has root a (i.e., if p(a) = 0), then p(x) is divisible by (x - a), i.e. p(x) = (x - a)q(x) for some polynomial q(x). In particular, if x_1 ; x_2 are roots of quadratic equation $ax^2+bx+c = 0$, then $ax^2+bx+c = a(x-x_1)(x-x_2)$. Therefore, if a = 1, then

$$\begin{array}{rcl} x_1 + x_2 &=& b \\ x_1 x_2 &=& c \end{array}$$

These formulas are called Vieta Formulas.

Homework

1. Let *a* and *b* be some numbers. Use the formulas discussed in previous classes to express the following expressions using only (a + b) = x and ab = y.

Example: Let's express $a^2 + b^2$ using only a + b and ab. We know that $(a + b)^2 = a^2 + 2ab + b^2$. From here, we get:

$$a^{2} + b^{2} = (a + b)^{2} - 2 \times ab = x^{2} - 2 \times y$$

- a. $(a-b)^2$ b. $\frac{1}{a} + \frac{1}{b}$ c. a-bd. $a^2 - b^2$ e. $a^3 + b^3$ (Hint: first compute $(a+b)(a^2 + b^2)$)
- 2. Let x_1, x_2 be roots of the equation $x^2 + 5x 7 = 0$. Find
 - a. $x_1^2 + x_2^2$ b. $(x_1 - x_2)^2$ c. $\frac{1}{x_2} + \frac{1}{x_2}$ d. $x_1^2 + x_2^3$
- 3. Solve the following equations:

a.
$$x^2 - 5x + 6 = 0$$

b. $x^2 = 1 + x$
c. $\sqrt{2x + 1} = x$
d. $x + \frac{1}{x} = 3$

- 4. Solve the equation $x^4 3x^2 + 2 = 0$
- 5. a. Prove that for any a > 0, we have $a + \frac{1}{a} \ge 2$, with equality only when a = 1.
 - b. Show that for any $a, b \ge 0$, one has $\frac{a+b}{2} \ge \sqrt{ab}$. (The left hand side is usually called the *arithmetic mean* of a, b; the right hand side is called the *geometric mean* of a, b.)