Math 7: Handout 14
 Vieta Formulas.

Vieta formulas

If an equation $p(x)=0$ has root a (i.e., if $p(a)=0$), then $p(x)$ is divisible by $(x-a)$, i.e. $p(x)=(x-a) q(x)$ for some polynomial $q(x)$. In particular, if $x_{1} ; x_{2}$ are roots of quadratic equation $a x^{2}+b x+c=0$, then $a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)$.

Therefore, if $a=1$, then

$$
\begin{aligned}
x_{1}+x_{2} & =b \\
x_{1} x_{2} & =c
\end{aligned}
$$

These formulas are called Vieta Formulas.

Homework

1. Let a and b be some numbers. Use the formulas discussed in previous classes to express the following expressions using only $(a+b)=x$ and $a b=y$.
Example: Let's express $a^{2}+b^{2}$ using only $a+b$ and $a b$. We know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$. From here, we get:

$$
a^{2}+b^{2}=(a+b)^{2}-2 \times a b=x^{2}-2 \times y
$$

a. $(a-b)^{2}$
b. $\frac{1}{a}+\frac{1}{b}$
c. $a-b$
d. $a^{2}-b^{2}$
e. $a^{3}+b^{3}$ (Hint: first compute $\left.(a+b)\left(a^{2}+b^{2}\right)\right)$
2. Let x_{1}, x_{2} be roots of the equation $x^{2}+5 x-7=0$. Find
a. $x_{1}^{2}+x_{2}^{2}$
b. $\left(x_{1}-x_{2}\right)^{2}$
c. $\frac{1}{x_{2}}+\frac{1}{x_{2}}$
d. $x_{1}^{2}+x_{2}^{3}$
3. Solve the following equations:
a. $x^{2}-5 x+6=0$
b. $x^{2}=1+x$
c. $\sqrt{2 x+1}=x$
d. $x+\frac{1}{x}=3$
4.

Solve the equation $x^{4}-3 x^{2}+2=0$
5. a. Prove that for any $a>0$, we have $a+\frac{1}{a} \geq 2$, with equality only when $a=1$.
b. Show that for any $a, b \geq 0$, one has $\frac{a+b}{2} \geq \sqrt{a b}$. (The left hand side is usually called the arithmetic mean of a, b; the right hand side is called the geometric mean of a, b.)

