MATH 7 HOMEWORK 28 VECTORS

APRIL 28, 2019

VECTORS

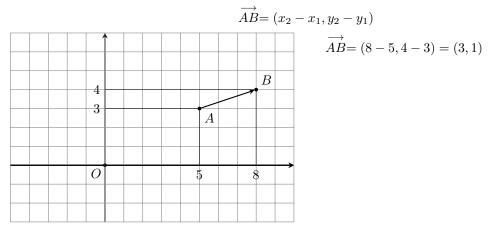
A vector is a directed segment. We denote the vector from A to B by \overrightarrow{AB} . We will also frequently use lower-case letters for vectors: \vec{v} .

We will consider two vectors to be the same if they have the same length and direction; this happens exactly when these two vectors form two opposite sides of a parallelogram. Using this, we can write any vector \vec{v} as a vector with tail at given point A. We will sometimes write $A + \vec{v}$ for the head of such a vector.

Vectors are used in many places. For example, many physical quantities (velocities, forces, etc) are naturally described by vectors.

VECTORS IN COORDINATES

Recall that every point in the plane can be described by a pair of numbers – its coordinates. Similarly, any vector can be described by two numbers, its x-coordinate and y-coordinate: for a vector \overrightarrow{AB} , with tail $A = (x_1, y_1)$ and head $B = (x_2, y_2)$, its coordinates are



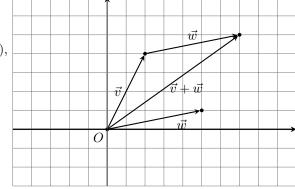
OPERATIONS WITH VECTORS

Let \vec{v} , \vec{w} be two vectors. Then we define a new vector, $\vec{v} + \vec{w}$ as follows: choose A, B, C so that $\vec{v} = AB$, $\vec{w} = \overrightarrow{BC}$; then define

$$\vec{v} + \vec{w} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

In coordinates, it looks very simple: if $\vec{v} = (v_x, v_y)$, $\vec{w} = (w_x, w_y)$, then

$$\vec{v} + \vec{w} = (v_x + w_x, v_y + w_y)$$



Theorem. So defined addition is commutative and associative:

$$\vec{v} + \vec{w} = \vec{w} + \vec{v}$$
$$(\vec{v_1} + \vec{v_2}) + \vec{v_3} = \vec{v_1} + (\vec{v_2} + \vec{v_3})$$

There is no obvious way of multiplying two vectors; however, one can multiply a vector by a number: if $\vec{v} = (v_x, v_y)$ and t is a real number, then we define

$$t\vec{v} = (tv_x, tv_y)$$

Problems

- 1. (a) Let A = (3, 6), B = (5, 2). Find the coordinates of the vector $\vec{v} = \overrightarrow{AB}$ and coordinates of the points $A + 2\vec{v}; A + \frac{1}{2}\vec{v}; A \vec{v}$.
 - (b) Repeat part (a) for points $A = (x_1, y_1), B = (x_2, y_2)$
- **2.** Let $A = (x_1, y_1), B = (x_2, y_2)$. Show that the midpoint M of segment AB has coordinates $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$ and that $\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$.

[Hint: point M is $A + \frac{1}{2}\vec{v}$, where $\vec{v} = AB$].

- **3.** Consider a parallelogram ABCD with vertices A(0,0), B(3,6), D(5,-2). Find the coordinates of: (a) vertex C
 - (b) midpoint of segment BD
 - (c) midpoint of segment AC
- 4. Repeat the previous problem if coordinates of B are (x_1, y_1) , and coordinates of D are (x_2, y_2) . Use the result to prove that diagonals of a parallelogram bisect each other (i.e., the intersection point is the midpoint of each of them).

1. Review Problems

- 5. Review Homeworks 5-8.
- 6. Given the sequence 11, 18, 25, ..., what is the common difference? What is the 10th term? What is the sum of the first 100 terms?
- 7. What is $5 + 7 + 9 + \dots + 25$?
- 8. What is the common difference of an arithmetic sequence if the 3rd term is 18 and the 11th term is 44?
- **9.** What is $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{10}}$?
- **10.** What is $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots$?
- **11.** What is $\binom{5}{3}$? What is in general $\binom{n}{k}$?
- 12. Draw Pascal's triangle.
- 13. How many distinct 7-unit paths are there from the lower left to the upper right corner?

		ſ

14. Compute
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}$$

15. Compute $\frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$