MATH 7: HOMEWORK 22

MARCH 17, 2019

1. Arcs

Let A, B be two distinct points on a circle Σ. An arc $\overparen{A B}$ is the part of the circle bounded by these two points; more formally, it can be defined as the intersection of angle $\angle A O B$ with Σ (here O is the center of the circle; angles with vertex at O are called central angles). The angle measure of an arc is defined to be the angle measure of the corresponding central angle:

$$
m \overparen{A B}=m \angle A O B
$$

Note that the notation $\overparen{A B}$ is ambiguous: there are two arcs bounded by A, B (just as there are two angles bounded by rays $\overrightarrow{O A}, \overrightarrow{O B}$).

2. Central angle theorem

Let A, B, C be three points on a circle Σ. It turns out that there is a simple relation between the measure of $\angle A C B$ and the measure of the arc $\overparen{A B}$.

Theorem 1 (Central angle theorem). Let Σ be a circle with center O, and let A, B, C be distinct points on Σ. Then $m \angle A C B=\frac{1}{2} m \angle A O B$.

Proof. We will first prove a special case of the theorem, and later show how the general statement can be deduced from this special case.
Consider the special case when $C B$ is a diameter, i.e. goes through the center O of the circle. Since $A O=O C, \triangle A O C$ is isosceles and thus $\angle A \cong$ $\angle C$. Since $\angle A O B$ is the exterior angle of $\triangle A O C$, we have $m \angle A O B=$ $m \angle A+m \angle C=2 m \angle C$. This completes the proof of the special case. The proof of the general case was discussed in class.

This theorem can be reversed.
Theorem 2 (Central angle theorem 2). Let Σ be a circle with center O, and let A, B be distinct points on Σ. Let C be such that $m \angle A C B=\frac{1}{2} m \angle A O B$. Then C also lies on the circle Σ.

These theorems have a number of corollaries. Here are some.
Theorem 3. Let A, B, C be distinct points. Then $\angle A C B$ is a right angle if and only if C lies on the circle with diameter $A B$.

Theorem 4. A quadrialateral $A B C D$ can be inscribed in a circle if and only if sums of opposite angles are equal to $180^{\circ}: m \angle A+m \angle C=m \angle B+m \angle D=180^{\circ}$.

Theorem 5. Let M be a point inside the circle Σ. Then for any chord ${ }^{1} A B$ passing through M, the product $A M \cdot M B$ is the same.
Proof. Let $A_{1} B_{1}, A_{2} B_{2}$ be two such chords. Consider the triangles $\triangle A_{1} A_{2} M$, $\triangle B_{2} B_{1} M$. By central angle theorem,

$$
m \angle A_{1}=\frac{1}{2} m \stackrel{\frown}{A_{2} B_{1}}=m \angle B_{2}
$$

similarly, $m \angle A_{2}=m \angle B_{1}$. Therefore, these two triangles are similar by AA: $\triangle A_{1} A_{2} M \sim \triangle B_{2} B_{1} M$. Therefore,

$$
\frac{A_{1} M}{B_{2} M}=\frac{A_{2} M}{B_{1} M}
$$

Cross-multiplying, we get $A_{1} M \cdot B_{1} M=A_{2} M \cdot B_{2} M$. Thus, for any two such chords, the product is the same.

Homework

1. Do problems 1-4 on page 307 in the geometry textbook.
2. Let $A B C D$ be a trapezoid with bases $A D, B C$ and let M, N be midpoints of $A D, B C$. Prove that line $\overleftrightarrow{M N}$ passes through the intersection point P of lines $\overleftrightarrow{A B}, \overleftrightarrow{C D}$. [Hint: can you prove that line $P M$ goes through N ?]
3. Let C, B be points on the circle Σ and let A be such that $A C$ is the tangent line to Σ. Prove that then $m \angle A C B=\frac{1}{2} m \overparen{B C}$.
4. Let M be a point outside the circle Σ.
(a) Let l be a line through M which intersects Σ at points A, B. Show that then the product $M A \cdot M B$ does not depend on the choice of l. [Hint: let l_{1}, l_{2} be two such lines and $A_{1}, B_{1}, A_{2}, B_{2}$ be corresponding intersection points. Arguing similar to the proof of Theorem 5, show that then $M A_{1} \cdot M B_{1}=M A_{2} \cdot M B_{2}$.]
(b) Show that the product $M A \cdot M B$, discussed in the previous part, is equal to $M C^{2}$, where C is the point on Σ such that $M C$ is the tangent line.
5. Prove Theorem 4
6. Given segments of length x, y, construct a segment of length $\sqrt{x y}$, using only ruler and compass. [Hint: use Theorem 3 and similar triangles created when using the altitude in a right triangle in homework 18, last theorem on the first page.]
7. Given a circle Σ with center O and a point P outside it, construct a tangent line to Σ through P using ruler and compass. [The problem has many solutions. Here is one of them: if A is the tangency point, then $P A \perp O A$; now we can use Theorem 3.]
8. Consider an angle such that its vertex is outside the circle Σ, and each of its sides intersects Σ at two points. Prove that then the measure of this agle is equal to half of the difference of the two intercepted arcs:

$$
m \angle 1=\frac{1}{2}(m \overparen{A B}-m \overparen{C D})
$$

[Hint: draw segment $A D$ and use exterior angle theorem]

[^0]
[^0]: ${ }^{1}$ Recall that a chord is a segment both ends of which lie on the circle

