## MATH 7: HOMEWORK 22

MARCH 17, 2019

## 1. Arcs

Let A, B be two distinct points on a circle  $\Sigma$ . An arc AB is the part of the circle bounded by these two points; more formally, it can be defined as the intersection of angle  $\angle AOB$  with  $\Sigma$  (here O is the center of the circle; angles with vertex at O are called **central angles**). The angle measure of an arc is defined to be the angle measure of the corresponding central angle:

$$m AB = m \angle AOB$$

Note that the notation AB is ambiguous: there are two arcs bounded by A, B (just as there are two angles bounded by rays  $\overrightarrow{OA}, \overrightarrow{OB}$ ).

## 2. Central angle theorem

Let A, B, C be three points on a circle  $\Sigma$ . It turns out that there is a simple relation between the measure of  $\angle ACB$  and the measure of the arc AB.

**Theorem 1** (Central angle theorem). Let  $\Sigma$  be a circle with center O, and let A, B, C be distinct points on  $\Sigma$ . Then  $m \angle ACB = \frac{1}{2}m \angle AOB$ .



*Proof.* We will first prove a special case of the theorem, and later show how the general statement can be deduced from this special case.

Consider the special case when CB is a diameter, i.e. goes through the center O of the circle. Since AO = OC,  $\triangle AOC$  is isosceles and thus  $\angle A \cong \angle C$ . Since  $\angle AOB$  is the exterior angle of  $\triangle AOC$ , we have  $m \angle AOB = m \angle A + m \angle C = 2m \angle C$ . This completes the proof of the special case. The proof of the general case was discussed in class.

This theorem can be reversed.

**Theorem 2** (Central angle theorem 2). Let  $\Sigma$  be a circle with center O, and let A, B be distinct points on  $\Sigma$ . Let C be such that  $m \angle ACB = \frac{1}{2}m \angle AOB$ . Then C also lies on the circle  $\Sigma$ .

These theorems have a number of corollaries. Here are some.

**Theorem 3.** Let A, B, C be distinct points. Then  $\angle ACB$  is a right angle if and only if C lies on the circle with diameter AB.

**Theorem 4.** A quadrialateral ABCD can be inscribed in a circle if and only if sums of opposite angles are equal to  $180^\circ$ :  $m \angle A + m \angle C = m \angle B + m \angle D = 180^\circ$ .

**Theorem 5.** Let M be a point inside the circle  $\Sigma$ . Then for any chord<sup>1</sup> AB passing through M, the product  $AM \cdot MB$  is the same.

*Proof.* Let  $A_1B_1, A_2B_2$  be two such chords. Consider the triangles  $\triangle A_1A_2M$ ,  $\triangle B_2B_1M$ . By central angle theorem,

$$m \angle A_1 = \frac{1}{2}m \stackrel{\frown}{A_2B_1} = m \angle B_2$$

similarly,  $m \angle A_2 = m \angle B_1$ . Therefore, these two triangles are similar by AA:  $\triangle A_1 A_2 M \sim \triangle B_2 B_1 M$ . Therefore,

$$\frac{A_1M}{B_2M} = \frac{A_2M}{B_1M}$$

Cross-multiplying, we get  $A_1M \cdot B_1M = A_2M \cdot B_2M$ . Thus, for any two such chords, the product is the same.

## Homework

- 1. Do problems 1-4 on page 307 in the geometry textbook.
- **2.** Let ABCD be a trapezoid with bases AD, BC and let M, N be midpoints of AD, BC. Prove that line  $\overrightarrow{MN}$  passes through the intersection point P of lines  $\overrightarrow{AB}, \overrightarrow{CD}$ . [Hint: can you prove that line PM goes through N?]
- **3.** Let C, B be points on the circle  $\Sigma$  and let A be such that AC is the tangent line to  $\Sigma$ . Prove that then  $m \angle ACB = \frac{1}{2}m \stackrel{\frown}{BC}$ .
- 4. Let M be a point outside the circle  $\Sigma$ .
  - (a) Let l be a line through M which intersects  $\Sigma$  at points A, B. Show that then the product  $MA \cdot MB$  does not depend on the choice of l. [Hint: let  $l_1, l_2$  be two such lines and  $A_1, B_1, A_2, B_2$  be corresponding intersection points. Arguing similar to the proof of Theorem 5, show that then  $MA_1 \cdot MB_1 = MA_2 \cdot MB_2$ .]
  - (b) Show that the product  $MA \cdot MB$ , discussed in the previous part, is equal to  $MC^2$ , where C is the point on  $\Sigma$  such that MC is the tangent line.
- **5.** Prove Theorem 4
- 6. Given segments of length x, y, construct a segment of length  $\sqrt{xy}$ , using only ruler and compass. [Hint: use Theorem 3 and similar triangles created when using the altitude in a right triangle in homework 18, last theorem on the first page.]
- 7. Given a circle  $\Sigma$  with center O and a point P outside it, construct a tangent line to  $\Sigma$  through P using ruler and compass. [The problem has many solutions. Here is one of them: if A is the tangency point, then  $PA \perp OA$ ; now we can use Theorem 3.]
- 8. Consider an angle such that its vertex is outside the circle Σ, and each of its sides intersects Σ at two points. Prove that then the measure of this agle is equal to half of the difference of the two intercepted arcs:

$$m \angle 1 = \frac{1}{2} (m \stackrel{\frown}{AB} - m \stackrel{\frown}{CD})$$

[Hint: draw segment AD and use exterior angle theorem]



<sup>&</sup>lt;sup>1</sup>Recall that a chord is a segment both ends of which lie on the circle