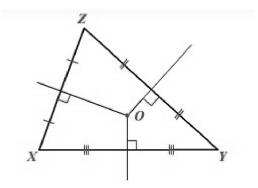
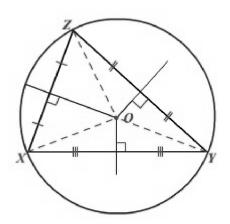
MATH 7: HOMEWORK 20

MARCH 3, 2019


1. Perpendicular Bisectors in a Triangle

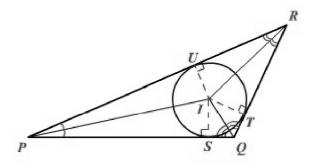
We have seen in a previous homework how to construct the perpendicular bisector given 2 points, using only a ruler and compass.


A perpendicular bisector is the locus of all points equally away from two given points.

A perpendicular bisector in a triangle is perpendicular and bisects the side of a triangle.

Theorem 1. In a $\triangle ABC$, all 3 perpendicular bisectors intersect in one point only. We say they are **concurrent**. This point is called the circumcenter of a triangle

Theorem 2. The intersection point of all 3 perpendicular bisectors in a triangle is the center of the circumcircle of the triangle. The circumcircle is the circle that inscribes the triangle.



2. Angle bisectors in a triangle

We have seen how to build an angle bisector using only ruler and compass. An angle bisector is the locus of all points equally away from two lines.

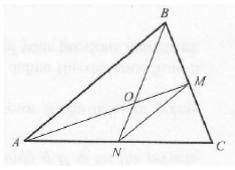
Theorem 3. All three angle bisectors in a triangle are concurrent.

Theorem 4. The point where all three angle bisectors meet is called the incenter. It is the center of the circle that is inscribed in the triangle

3. ALTITUDES IN A TRIANGLE

An altitude in a triangle is the line through a vertex of the triangle and perpendicular on the opposite side.

Theorem 5. All three altitudes in a triangle are concurrent and the intersection point is called the orthocenter.


4. Medians in a triangle

A median in a triangle connects a vertex with the middle of the opposite side of a triangle.

Theorem 6. All three medians in a triangle are concurrent. The intersection point is called centroid or center of mass.

Homework

- 1. Solve problems 9-12 on page 150 in the E-Z Geometry book.
- **2.** Prove Theorems 1,2,3,4
- 3. Prove Theorem 5. For a given triangle $\triangle ABC$, draw through each vertex a line parallel to the opposite side of the triangle. This will produce a larger triangle; denote it $\triangle A'B'C'$.
 - (a) Show that triangles $\triangle ABC$, $\triangle A'B'C'$ are similar and find the coefficient.
 - (b) Show that altitudes of $\triangle ABC$ are perpendicular bisectors of $\triangle A'B'C'$.
 - (c) Show that the three altitudes of $\triangle ABC$ intersect at a single point.
- **4.** Prove Theorem 6. Let AM, BN be the medians of a triangle $\triangle ABC$, and let O be their intersection point.
 - (a) Show that triangles $\triangle AOB$ and $\triangle MON$ are similar and find the coefficient.
 - (b) Show that AO = 2OM.
 - (c) Let O' be the intersection point of AM with the third median, CK. Show that O = O' and thus, all three medians intersect at a single point.

