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1. Pythagorean Theorem

The following theorem is one of the oldest known to humanity. According to some studies, this result may
have been known as early as 4 thousand years ago — long before Pythagoras or Euclid. There is a number
of ways to prove this theorem. The proof given below is not the most geometrically intuitive — but it is the
easiest one to derive from the axioms.

Theorem 1. Let 4ABC be a right triangle, with ∠C being the right angle.
Denote a = BC, b = AC, c = AB. Then

a2 + b2 = c2

Proof. Let CM be the altitude from vertex C. Triangles 4ABC, 4ACM ,
4CBM are similar; thus, x

b = b
c , so x = b2/c. Similarly, y = a2/c.

Therefore,

c = x + y =
a2

c
+

b2

c
Multiplying both sides by c, we get the Pythagorean theorem. �

This theorem can be reversed:

Theorem 2. If AB2 = AC2 + BC2, then 4ABC is a right triangle, with right angle C.

Proof. Construct a right triangle 4A′B′C ′, with m∠C ′ = 90
◦

and C ′B′ = CB, C ′A′ = CA. Then,
by Pythagorean theorem, A′B′ =

√
AC2 + AB2 = AB; thus, 4A′B′C ′ ∼= 4ABC by SSS. Therefore,

m∠C = m∠C ′ = 90
◦
. �

2. Right Triangles Congruences

Theorem 3 (Congruence by HL). If two right triangles have congruent hypothenuses and a congruent pair
of legs: c = c′, a = a′, then these triangles are congruent. (similar SSS)

Theorem 4 (Congruence by LL). If two right triangles have both equal pair of legs: b = b′, a = a′, then
these triangles are congruent. (similar SAS)

Theorem 5 (Congruence by LA). If two right triangles have a corresponding congruent pair of acute angles
and a corresponding congruent pair of legs, then these triangles are congruent. (similar ASA)

Theorem 6 (Congruence by HA). If two right triangles have a congruent pair of acute angles and a con-
gruent pair of hypotenuse, then these triangles are congruent. (similar ASA)

3. Perpendicular bisectors and angle bisectors in a triangle

A perpendicular bisector of a segment AB is a line l which is perpendicular to AB and contains the midpoint
M of AB.

Theorem 7. For given points A,B, a point P is equidistant from A,B if and only if P is on the perpendicular
bisector l of AB: AP = BP ⇐⇒ P ∈ l.

This theorem is sometimes formulated by saying that the perpendicular bisector is the locus of points
equidistant from A,B.

There is a similar result for points equidistant from two given lines. Namely, define the distance from a
point P to the line l to be the length of perpendicular PM from P to l (by one of your previous homework
problems, this is the shortest distance from P to l).

Theorem 8. For given intersecting lines l,m, a point P is equidistant from l,m if and only if P is on an
angle bisector of one of the four angles formed by l,m.

Theorem 9. In any triangle 4ABC, the three perpendicular bisectors of the sides of the triangle interesect
at a single point P . This point is equidistant from all three vertices: AP = BP = CP .



Proof. Let l be the perpendicular bisector of side AB, and m the perpendicular bisector of side BC. Let
P be the intersection point of l,m. Then AP = BP (by Theorem 7, since P ∈ l); similarly, BP = CP .
Therefore, AP = CP ; thus, by Theorem 7, P lies on the perpendicular bisector of side AC.

�

Theorem 10. In any triangle 4ABC, the three angle bisectors interesect at a single point Q. This point is
equidistant from all three sides of the triangle.

Homework

1. Solve problems 29,30,31,32 on page 231 in the E-Z Geometry book.

2. Prove Theorems 3, 4, 5, 6.

3. Prove Theorem 8.

4. Prove Theorem 10.

5. In a trapezoid ABCD, with bases AD, BC, it is given that AD = 13, BC = 7, and the distance
between bases is 4. It is also given that AB = CD. Find AB, AC.


