MATH 7: HOMEWORK 16

JAN 27, 2019

1. Alternate Interior Angles

Let line l intersect parallel lines m, n. Then $\angle 1=\angle 2$ are as shown in the figure below.

The converse is also true and gives us a way to prove that two lines are parallel. If line l intersects lines m, n and $\angle 1=\angle 2$ then m, n are parallel.

2. Sum of angles of a triangle

Definition A triangle is a figure consisting of three distinct points A, B, C (called vertices) and line segments $\overline{A B}, \overline{B C}, \overline{A C}$. We denote such a triangle by $\triangle A B C$.

Similarly, a quadrilateral is a figure consisting of 4 distinct points A, B, C, D and line segments $\overline{A B}, \overline{B C}$, $\overline{C D}, \overline{D A}$ such that these segments do not intersect except at A, B, C, D.

Theorem The sum of measures of angles of a triangle is 180°.
Proof Draw a line m through B parallel to $\overleftrightarrow{A C}$. Let D, E be points on m as shown in the figure below.

Then $m \angle D B A=m \angle A$ as alternate interior angles, $m \angle C B E=m \angle C$. On the other hand, we have

$$
m \angle D B A+m \angle B+m \angle C B E=180^{\circ}
$$

Thus, $m \angle A+m \angle B+m \angle C=180^{\circ}$.
Theorem For a triangle $\triangle A B C$, let D be a point on continuation of side $A C$, so that C is between A and D. Then $m \angle C B D=m \angle A+m \angle B$. (Such an angle is called the exterior angle of triangle $A B C$.)

Theorem Sum of angles of a quadrilateral is equal to 360°.

Homework

1. Exercises $3,4,5,7$ on pages $76-77$ in the book. [Notation $\angle 1 \cong \angle 2$ means $m \angle 1=m \angle 2$.]
2. Exercises $6,7,8$ on page 98 in the book.
3. Deduce a formula for the sum of angles in a polygon with n vertices.
4. In the figure below, all angles of the 7 -gon are equal. What is angle α ? [By the way: α is a Greek letter, pronounced "alpha"; mathematicians commonly use Greek letters to denote angles]

5. The reflection law states that the angles formed by the incoming light ray and the reflected one with the surface of the mirror are equal: $m \angle 1=m \angle 2$

Using this law, show that a corner made of two perpendicular mirrors will reflect any light ray exactly back: the reflected ray is parallel to the incoming one:

This property - or rather, similar property of corners in 3-D - is widely used: reflecting road signs, tail lights of a car, reflecting strips on clothing are all contrsructed out of many small reflecting corners so that they reflect the light of a car headlamp exactly back to the car.
6. Show that if, in a quadrilateral $A B C D$, diagonally opposite angles are equal ($m \angle A=m \angle C, m \angle B=$ $m \angle D)$, then opposite sides are parallel. [Hint: show first that $m \angle A+m \angle B=180^{\circ}$.]

