MATH 7: HOMEWORK 16

JAN 27, 2019

1. Alternate Interior Angles

Let line l intersect parallel lines m, n. Then $\angle 1 = \angle 2$ are as shown in the figure below.

The converse is also true and gives us a way to prove that two lines are parallel. If line l intersects lines m, n and $\angle 1 = \angle 2$ then m, n are parallel.

2. Sum of angles of a triangle

Definition A triangle is a figure consisting of three distinct points A, B, C (called vertices) and line segments \overline{AB} , \overline{BC} , \overline{AC} . We denote such a triangle by $\triangle ABC$.

Similarly, a quadrilateral is a figure consisting of 4 distinct points A, B, C, D and line segments \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} such that these segments do not intersect except at A, B, C, D.

Theorem The sum of measures of angles of a triangle is 180° .

Proof Draw a line m through B parallel to AC. Let D, E be points on m as shown in the figure below.

Then $m \angle DBA = m \angle A$ as alternate interior angles, $m \angle CBE = m \angle C$. On the other hand, we have

 $m \angle DBA + m \angle B + m \angle CBE = 180^{\circ}$

Thus, $m \angle A + m \angle B + m \angle C = 180^{\circ}$.

Theorem For a triangle $\triangle ABC$, let D be a point on continuation of side AC, so that C is between A and D. Then $m \angle CBD = m \angle A + m \angle B$. (Such an angle is called the exterior angle of triangle ABC.)

Theorem Sum of angles of a quadrilateral is equal to 360° .

Homework

- **1.** Exercises 3,4,5,7 on pages 76-77 in the book. [Notation $\angle 1 \cong \angle 2$ means $m \angle 1 = m \angle 2$.]
- 2. Exercises 6,7,8 on page 98 in the book.
- **3.** Deduce a formula for the sum of angles in a polygon with n vertices.
- 4. In the figure below, all angles of the 7-gon are equal. What is angle α ?[By the way: α is a Greek letter, pronounced "alpha"; mathematicians commonly use Greek letters to denote angles]

5. The reflection law states that the angles formed by the incoming light ray and the reflected one with the surface of the mirror are equal: $m \angle 1 = m \angle 2$

Using this law, show that a corner made of two perpendicular mirrors will reflect any light ray exactly back: the reflected ray is parallel to the incoming one:

This property – or rather, similar property of corners in 3-D – is widely used: reflecting road signs, tail lights of a car, reflecting strips on clothing are all contributed out of many small reflecting corners so that they reflect the light of a car headlamp exactly back to the car.

6. Show that if, in a quadrilateral ABCD, diagonally opposite angles are equal $(m \angle A = m \angle C, m \angle B = m \angle D)$, then opposite sides are parallel. [Hint: show first that $m \angle A + m \angle B = 180^{\circ}$.]