MATH 7
 HOMEWORK 14: COORDINATE PLANE. EQUATION OF A LINE AND A CIRCLE
 JAN 13, 2019

Coordinates

Today we gave a brief overview of coordinate geometry:

- After we choose an origin (usually denoted O) and two perpendicular axes, every point in the plane is described by a pair of numbers, its x and y coordinates. We will write (a, b) for point with x coordinate a and y-coordinate b.
- Distance between two points is given by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

- A general equation of non-vertical line is $y=m x+b$; the number m is called the slope of this line. It can also be defined as follows: if $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are two points on this line, then $\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=m$.

Another common form of writing the equation of a line is $a x+b y=c$.

- Equation of a circle with center at $\left(x_{0}, y_{0}\right)$ and radius r is $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$.

Homework

1. Show that two lines are parallel if and only if they have the same slope.
2. (a) Show that 90° counterclockwise rotation sends point $(2,1)$ to point $(-1,2)$. Where would it send point (x, y) ?
*(b) Show that two lines are perpendicular if and only if their slopes are related by $m_{1}=-1 / m_{2}$.
3. Find the equation of a line going through point $(5,7)$ and having slope 2.
4. Find the equation of a line through two points, $(3,4)$ and $(5,7)$.
5. Let $A=(3,5), B=(6,1)$ be two of the vertices of a square $A B C D$ (the vertices are labeled A, B, C, D going counterclockwise). Find the coordinates of points C, D and of the center of the square. Find the area of this square.
6. Let C be the circle with center at $(0,1)$ and radius 2 , and l - the line with slope 1 going through the origin. Find the intersection points of the circle C and line l, and compute the distance between them.
*7. Prove the following formula for the distance from a point to the line: the distance from point $P=(u, v)$ to the line given by equation $a x+b y=0$ is

$$
d=\frac{|a u+b v|}{\sqrt{a^{2}+b^{2}}}
$$

8. Prove that the set of all points P satisfying the following equation
distance from P to the origin $=2 \cdot($ distance from P to $(0,3))$
is a circle. Find its radius and center.
