MATH 7

HOMEWORK 11: VIETA FORMULAS AND QUADRATIC INEQUALITIES

DEC 8, 2018

VIETA FORMULAS

If a polynomial p(x) has root a (i.e., if p(a) = 0), then p(x) is divisible by (x - a), i.e. p(x) = (x - a)q(x) for some polynomial q(x). In particular, if x_1, x_2 are roots of quadratic polynomial $ax^2 + bx + c$, then $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

Therefore, if a = 1, then

$$x_1 + x_2 = -b$$
$$x_1 x_2 = c$$

(Vieta formulas).

SOLVING POLYNOMIAL INEQUALITIES

We discussed the general rule for solving polynomial inequalities:

- Find the roots and factor your polynomial, writing it in the form $p(x) = a(x x_1)(x x_2)$ (for polynomial of degree more than 2, you would have more factors).
- Roots x_1, x_2, \ldots divide the real line into intervals; define the sign of each factor and the product on each of the intervals.

Homework

- 1. Can you guess an analog of Vieta formulas for equation of degree 3: if x_1, x_2, x_3 are roots of an equation $x^3 + bx^2 + cx + d$, then what is the relation between b, c, d and x_1, x_2, x_3 ?
- **2.** Let x_1, x_2 be roots of equation $x^2 + 5x 7 = 0$. Find (a) $x_1^2 + x_2^2$ (b) $(x_1 x_2)^2$ (c) $\frac{1}{x_1} + \frac{1}{x_2}$ (d) $x_1^3 + x_2^3$ (hint for part (d): compute first $(x_1 + x_2)(x_1^2 + x_2^2)$)
- *3. Prove the statement we used in class: if a polynomial p(x) has root a (i.e., if p(a) = 0), then p(x) is divisible by (x a), i.e. p(x) = (x a)q(x) for some polynomial q(x).
- **4.** Solve the equation $x^4 3x^2 + 2 = 0$.
- 5. Solve the following equations and inequalities:

(a)
$$x^2 - 5x + 6 > 0$$
 (b) $x^2 < 1 + x$ (c) $\frac{x+1}{x-2} > 0$ (d) $x(x-5)(x+7) < 0$ (e) $\sqrt{2x+1} = x$ (f) $\frac{2x+1}{x-3} > 1$

- **6.** (a) Show that for any $a,b\geq 0$, one has $\frac{a+b}{2}\geq \sqrt{ab}$. (The left hand side is usually called the arithmetic mean of a,b; the right hand side is called the geometric mean of a,b.)
 - (b) Prove that for any a > 0, we have $a + \frac{1}{a} \ge 2$, with equality only when a = 1.
- *7. Solve equation $x^4 5x^3 + 6x^2 5x + 1 = 0$. [Hint: divide by x^2 and try to rewrite as an equation in y = x + (1/x). The same trick works for any symmetric equation, in which coefficient of x^4 is the same as the constant term, and coefficient of x^3 is the same as coef. of x.]
 - **8.** For what values of a does $x^2 + ax + 14$ has no roots? exactly one root? two roots?