## MATH7: HOMEWORK 9: INEQUALITIES

NOV 18, 2018

An equation $f(x)=0$ can be easily solved if we can write $f(x)$ as a product of simpler functions: $f(x)=f_{1}(x) f_{2}(x)$ (this is called factoring $\left.f(x)\right)$. Indeed, as discussed last time, in this case $f_{1}(x) f_{2}(x)=$ $0 \Longleftrightarrow\left(f_{1}(x)=0\right) \vee\left(f_{2}(x)=0\right)$. For example, we can easily solve equation $x^{2}-3 x+2=0$ if we notice that $x^{2}-3 x+2=(x-1)(x-2)($ check! $)$, so $x^{2}-3 x+2=0 \Longleftrightarrow(x-1=0) \vee(x-2=0)$. Thus, the solutions are $\{1,2\}$.

In a similar way, factoring also gives an easy way to solve inequalities. For example, to solve $x^{2}-3 x+2>0$, notice that $x^{2}-3 x+2=(x-1)(x-2)$ and thus the sign of $x^{2}-3 x+2$ is determined by the signs of $x-1$ and $x-2$. Thus, we can consider separately the three regions into which points 1,2 divide the real line:

- For $x \in(-\infty, 1)$ (that is, $x<1$ ), we have $x-1<0, x-2<0$, so $(x-1)(x-2)>0$. Thus, any $x<1$ is a solution of $x^{2}-3 x+2>0$.
- For $x \in(1,2)$ (that is, $1<x<2$ ), we have $x-1>0, x-2<0$, so $(x-1)(x-2)<0$. Thus, $x^{2}-3 x+2>0$ has no solutions in $(1,2)$.
- For $x \in(2, \infty)$ (that is, $x>2$ ), we have $x-1>0, x-2>0$, so $(x-1)(x-2)>0$. Thus, any $x>2$ is a solution of $x^{2}-3 x+2>0$.

We have not yet considered the points 1,2 themselves; one easily sees that for $x=1$ or $2,(x-1)(x-2)=0$, so these points are not solutions of $(x-1)(x-2)>0$

Thus, the set of solutions is $(-\infty, 1) \cup(2, \infty)$.
The main difficulty is finding a factorization: how did we guess that $x^{2}-3 x+2=(x-1)(x-2)$ ? We will discuss general rule later; for now, here are some facts that can be useful (each is easy to check by direct calculation)

$$
\begin{equation*}
a^{2}-b^{2}=(a-b)(a+b) \tag{1}
\end{equation*}
$$

In particular, it shows that $x^{2}-a^{2}=(x-a)(x+a)$, so

$$
\begin{equation*}
x^{2}-a^{2}=0 \Longleftrightarrow(x=a) \vee(x=-a) \tag{2}
\end{equation*}
$$

Another useful fact is

$$
\begin{equation*}
(x+a)(x+b)=x^{2}+(a+b) x+a b . \tag{3}
\end{equation*}
$$

Thus, to factor $x^{2}+5 x+6$, we need to find $a, b$ such that $(x+a)(x+b)=x+(a+b) x+a b=x^{2}+5 x+6$, so we need $a+b=5, a b=6$. In this case, one can easily guess the answers: $a=2, b=3$.

1. Show that for $D \geq 0, x^{2}=D \Longleftrightarrow(x=\sqrt{D}) \vee(x=-\sqrt{D})$, and for $D<0$, equation $x^{2}=D$ has no solutions.
2. Solve the equation $(x-1)^{2}=6$.
3. (a) Solve the equation $x^{4}-1=0$ (hint: $\left.x^{4}=\left(x^{2}\right)^{2}\right)$.
(b) Solve the inequality $x^{4}-1>0$.
4. Solve the following equations. Carefully write all the steps in your argument. Please do not use calculators.
(a) $x^{2}-5 x+4=0$
(b) $\frac{x}{x-2}=x-2$
(c) $x^{2}=(1-x)^{2}$
(d) $x^{3}+3 x^{2}+2 x=0$
(e) $x^{4}-5 x^{2}+4=0$
(f) $x^{2}-6 x+9=0$
5. Solve the following inequalities. Carefully write all the steps in your argument. Please do not use calculators.
(a) $x^{2}-5 x+4<0$
(b) $x^{2}-5 x+4>0$
(c) $\frac{x}{x-2}>0$
(d) $x^{3}+3 x^{2}+2 x<0$
(e) $x^{2}-6 x+9>0$
6. (a) Factor $x^{2}-2 x+1$
(b) Show that for any $x>0$, we have $x+\frac{1}{x} \geq 2$.
7. Solve:
(a) $\frac{x-1}{x}<0$
(b) $\frac{x}{x-1}>0$
(c) $\frac{x-4}{x+4}<0$
(d) $\frac{x-4}{x+4}>0$
(e) $\frac{x-1}{x}<1$
(c) $\frac{x-1}{x}>1$
