HOMEWORK 4 MATH 7B

OCT. 14, 2018

REVIEW

Pythagora's Theorem

In a right triangle with legs a and b, and hypotenuse c, the square of the hypotenuse is the sum of squares of each leg. $c^{2}=a^{2}+b^{2}$. The converse is also true, if the three sides of a triangle satisfy $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle. Some Pythagorean triples are: $(3,4,5),(5,12,13),(7,24,25),(8.15,17),(9,40,41),(11,60,61),(20,21,29)$.
To generate such Pythagorean triples, choose two positive integers a and $\mathrm{b},(a>b)$. Then plug the values into the sides as shown:

Can you explain why this method works?
The 30-60-90 Triangle

In a right triangle, if one of the angles is given as 30° or 60° then this triangle is called a $30-60-90$ triangle and you know the ratio of the sides. If the smaller leg is $\frac{a}{2}$ then the hypotenuse is a and using Pythagora's theorem one can find the altitude to be $\frac{a \sqrt{3}}{2}$.
An equilateral triangle of side length a can be cut in 2 such triangles when you draw the altitude. Therefore, the total area of an equilateral triangle of side length a is $\frac{a^{2} \sqrt{3}}{4}$

The 45-45-90 Triangle

Given that an angle of a right triangle is 45°, you can compute the other angle and it will also be 45°. This triangle is half a square, when the square is folded along its diagonal. Given a square of side length a, the diagonal length is $a \sqrt{2}$.

Distance between Two Points

The distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be calculated using Pythagora's theorem in the given right triangle. If the hypotenuse is d then $d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}, d=$ $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint of a Line Segment

The midpoint of a segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the point with coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Homework

1. Simplify
(a) $\frac{42^{2}}{6^{2}}=$
(b) $\frac{6^{3} \times 6^{4}}{2^{3} \times 3^{4}}=$
(c) $\left(2^{-3} \times 2^{7}\right)^{2}=$
(d) $\frac{3^{2} \times 6^{-3}}{10^{-3} \times 5^{2}}=$
2. Simplify
(a) $\frac{a}{2}+\frac{b}{4}=$
(b) $\frac{1}{a}+\frac{1}{b}=$
(c) $\frac{3}{x}+\frac{5}{x y}+\frac{5}{3 a}=$
3. Using algebraic identities calculate
(a) $299^{2}+598+1=$
(b) $199^{2}=$
(c) $51^{2}-102+1=$
4. Expand
(a) $(4 a-b)^{2}=$
(b) $(a+9)(a-9)=$
(c) $(3 a-2 b)^{2}=$
5. Factor
(a) $a b+a c=$
(b) $3 a(a+1)+2(a+1)=$
(c) $36 a^{2}-49=$
6. What is the area of a regular hexagon whose side is 5 cm ?
7. Find the distance between $(5,-4)$ and $(0,-1)$ on the coordinate plane. What is the midpoint?
8. What is the height of three congruent stacked circles with a radius of 12 cm ?

9. In a trapezoid ABCD with bases AD and $\mathrm{BC}, \angle A=90^{\circ}$, and $\angle D=45^{\circ}$. It is also known that $A B=10 \mathrm{~cm}$, and $A D=3 B C$. Find the area of the trapezoid.
10. Given 2 concentric circles, chord AB is 8 cm long and tangent to the smaller of two concentric circles. A and B are points on the larger circle. What is the area between the 2 circles?
11. In a right triangle $A B C, B C$ is the hypotenuse. Draw $A D$ perpendicular to $B C$, where D is on BC . The length of $\mathrm{BC}=13$, and $\mathrm{AB}=5$. What is the length of AD ?
12. $\frac{1}{1+\frac{2}{1+\frac{2}{6+12}}}=$
