MATH 7 HOMEWORK 3: RATIONALIZING THE DENOMINATOR SEP 30, 2018

Algebraic Identities

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a-b)(a+b)$$

Scientific Notation

A number is written in standard form or scientific notation if it has the form $\mathbf{N} \times \mathbf{10^n}$, where $1 \leq N < 10$ and n is an integer. For example 0.00023 is 2.3×10^{-4} in scientific notation. (2.3 if correct to 2 significant figures, 2.30 if correct to 3 significant figures).

Homework

- 1. Rewrite in scientific notation: 52,000,000 (correct to 2 significant figures), 32,000 (correct to 3 significant figures)
- **2.** Simplify:

(a)
$$\sqrt{\frac{56}{13}} \cdot \sqrt{\frac{26}{7}} =$$

(b) $\sqrt{48} =$
(c) $\frac{\sqrt{48}}{\sqrt{15}} =$

- **3.** Express the following expressions in the form $2^r 3^s a^m a^n$:
 - (a) $8a^3b^2(27a^3)(2^5ab) =$
 - (b) $3^2(2ab)^3(16a^2b^5)(24b^2a) =$
 - (c) $16a^2b^3(6ab^4)(ab^2)^3 =$

4. Write each of the following expressions in the form $a + b\sqrt{3}$, with rational a, b:

(c)
$$\frac{1}{1-2\sqrt{3}}$$
 (a) $(1+\sqrt{3})^2$ (b) $(1+\sqrt{3})^3$
(c) $\frac{1}{1-2\sqrt{3}}$ (c) $\frac{1+\sqrt{3}}{1-\sqrt{3}}$ (c) $\frac{1+2\sqrt{3}}{\sqrt{3}}$

5. Solve the following equations.

(a)
$$(x^2 - 1)(x + 2) = 0$$
 (b) $\frac{x + 2}{x + 3} = 2$ (c) $5(x + 1) = 3x + 2$
(d) $(x - 3)(x + 4) = 0$

- 6. Prove:
 - (a) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ (b) $(a-b)^3 = a^3 - 3a^2b + 2ab^2 - b^3$

- (c) Find $(a+b)^4$, $(a-b)^4$ using the previous results.
- **7.** Expand as sums of powers of *x*:
 - (a) $(2x+5)^2 =$
 - (b) $(2-4x)^2 =$
 - (c) $(1-2x)^2 =$
 - (d) $(1-x)^2(2-x) =$
 - (e) $(2x+1)^2(2-3x) =$
- 8. The population of a city was 20,000 in 1910, and it doubles every 10 years. What was the population in 1950? What will be the population in 2020?
- **9.** If a is even, show that a^2 is even, and if a is odd, show that a^2 is odd. (Hint: If a is even, it can be written as a = 2n, if it is odd then it can be written as a = 2n + 1).
- 10. Amanda has an average of 92 on her seven tests. What should she get on her 8th test to have an average of 93?
- 11. The shaded area is 11π . What is the radius of the larger circle?

12. PQRS is a square piece of paper. P is folded onto R and then Q is folded onto S. The area of the resulting figure is 9 square inches. Find the perimeter of square PQRS.

13. A $4 \times 4 \times 4$ cubical box has 64 small cubes inside. How many of these touch a side or the bottom of the box?