Math 6a/b: Homework 14
Homework \#14 is due January 27.

Graphs

Generally, a graph of function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is some line in the $x-y$ plane. If one has two graphs $y=f(x)$ and $y=g(x)$ one can find intersection points of corresponding graphs by solving the system of equations. For example, the intersection point of two straight lines $y=x+2$ and $y=-x$ is the point $(-1,1)$ as $x=-1$ and $y=1$ satisfy both of these equations; that is the point $(-1,1)$ lies simultaneously on both straight lines.

$$
\text { Graphs of } y=|x| \text { and } y=x^{2}
$$

The figures below show graphs of functions $y=|x|$ and $y=x^{2}$; the latter graph is called a parabola.

And here is what we can do to draw a graph of any parabola of the standard form $y=a x^{2}+b x+c$. You can verify the following identity yourself:

$$
\boldsymbol{a} x^{2}+\boldsymbol{b} x+\boldsymbol{c}=a(x-h)^{2}+k(\text { vertex form }), \text { where } h=-\frac{b}{2 a} \mathrm{~h} \text { and } k=-\frac{b^{2}-4 a c}{4 a} .
$$

You can convert from standard to the vertex form by using the coefficients a, b, c to obtain h and k, and then re-write the graph equation into the vertex form.
For example: $y=x^{2}+x$ can be converted into $y=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}$
The result will be a parabola obtained by stretching the usual parabola vertically by factor a (if a < 0, this means flipping it upside down and then stretching by $|\mathrm{a}|$) and then moving it so that the vertex will be at point (h, k). In particular, the branches go up if $\mathrm{a}>0$ and down if $\mathrm{a}<0$.

Obviously, the parabola either intersects $y=0$ (x-axis) at two points, does not intersect it, or touches $\mathrm{y}=0$ at a single point. Correspondingly, the quadratic equation has two roots, no roots or one root respectively. One can easily check that this corresponds to $\mathrm{D}>0, \mathrm{D}<0$ and D $=0$ respectively, where $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$.

Homework

1. Find the equation of the line which passes through point $(3,4)$ and has a slope +2 . (Hint: you only need to find the intercept and write $y=a x+b$)
2. Find the equation of the line through points $(-2,0)$ and $(0,2)$.
3. Sketch the graph of the functions: $y=|x+1|$ and $y=-x+0.25$. How many solutions do you think the following equation has?

$$
|x+1|=-x+0.25
$$

Note: you are not asked to solve the equation - just answer how many solutions there are.
4. Find the intersection point of a line $y=1 / 4 x^{2}$ and a line $y=2 x+1$. Sketch or draw the graphs. (Hint: construct a system of equations and solve).
5. Sketch/draw graphs of the following functions:
a) $x+y=2$
b) $y=|x-5|+1$
c) $y=|x+1|+|x-2|$
d) $y=|x+1|+|x+2|+|x+3|$
6. Sketch/draw graphs of the following function: $y=-x^{2}+4 x-3$
a) To sketch, convert the function from standard to vertex form and use your knowledge of what a, h, and k mean.
b) If you cannot convert to vertex form, select points for x , then calculate the corresponding y-values as you will do to graph any other function.
c) Does the graph intersect the $y=0$ line (x -axis) - these are known as roots.
d) Does the number of roots correspond to the D-value? (*optional)

