Math 6a/b: Homework 23
Homework \#23 is due April 14.

Arithmetic sequences

Important formulas:

$$
\begin{gathered}
a_{n}=a_{1}+(n-1) d \\
a_{n}=\frac{a_{n-1}+a_{n+1}}{2} \\
d=\frac{a_{s}-a_{t}}{s-t} \\
S=\frac{\left(a_{1}+a_{n}\right) \times n}{2}
\end{gathered}
$$

Powers Review:

$$
\begin{aligned}
& a^{n}=a \times a \times a \times \ldots \times a(n \text { times }) \\
& a^{0}=1 \quad \text { read: } a \text {-to-the-zero } \\
& a^{1}=a \quad \text { is just itself ' } a \text { ' } \\
& (a b)^{n}=a^{n} \times b^{n} \\
& a^{n} a^{m}=a^{n+m} \\
& \frac{a^{n}}{a^{m}}=a^{n-m} \\
& a^{n}=\frac{1}{a^{-n}} \quad, a^{-n}=\frac{1}{a^{n}}
\end{aligned}
$$

Homework

1. If $a=2^{-13} 3^{9}$ and $b=2^{11} 3^{-7}$ what is the value of $a b$? of a / b ?
2. How many zeroes does the number $4^{15} 5^{26}$ end with?
3. Simplify the following and show the answer in the exponent (power) form
(a) $\frac{3^{7} \cdot 2^{7}}{2^{3} \cdot 2^{4}}=$
(b) $\frac{6^{5} \cdot 2^{4}}{3^{5} \cdot 2^{2}}=$
(c) $\frac{7^{9} \cdot 2^{5}}{7^{2} \cdot 2^{4}}=$
(d) $\frac{11^{4}}{11^{2} \cdot 5^{2} \cdot 5^{3}}=$
(e) $7^{4} \cdot 11^{2} \cdot 11^{-5} \cdot 7^{2}=$
(f) $\frac{3^{-5} \cdot 2^{7}}{3^{-3 \cdot 2^{4}}}=$
(g) $\frac{42^{2}}{6^{2}}=$
(h) $\frac{3^{5} \cdot 3^{-5}}{3^{9}}=$
(i) $\frac{x^{2} \cdot y^{2} \cdot x^{-3}}{x^{2}}=$
4. If $a_{3}+a_{8}+a_{10}+a_{16}+a_{18}+a_{23}=126$, find the sum of the first 25 terms.
5. For an arithmetic progression, $a_{1}+a_{2}+a_{3}=102$ and $a_{1}=15$. Find a_{10}
6. If 6 times the sixth term of an arithmetic progression is equal to 9 times the 9 th term, find the 15th term.
7. Find the sum of the first three elements of an arithmetic progression for which $a_{1}+a_{5}=22$ and $a_{8}-a_{5}=6$
