Math 6a/b: Homework 11
Homework \#11 is due December 16, 2018.

Geometry

Central angle and the defined arc: An angle which has its vertex at the center of a circle and which rays are radii of the circle is called a central angle. The arc enclosed by this angle has the same measure as the angle:
$\angle \mathrm{AOB}=45^{0}$, arc ${ }^{\cap} \mathrm{AB}=45 \operatorname{arc}^{0}$ (arc degrees).
Diameter perpendicular to a chord: If $k(O, r)$ is a circle in which the chord $A B$
 is perpendicular to the diameter $P Q$, then the diameter is also a bisector of $A B$, e.g. point $M=P Q \cap A B$ is a midpoint of $A B, A M=M B$.

The opposite is also true, if the diameter is a bisector of a chord $A B$, then the diameter is perpendicular to the chord, $P Q \perp A B$.

Homework

1. Two concentric circles, where the circles have the same center and one has a larger radius, are crossed by a line at consecutive points A, B, C, and D. Prove that $A B=C D$. Please, do this problem again but this time draw the line smaller than the diameter.
2. On the figure AB and CD are parallel chords in the circle where the diameter PM is perpendicular to them. (Note that parts a), b), and c) are independent.)
a) Prove that $\mathrm{AC}=\mathrm{BD}$. [Hint: draw a triangle connecting A, B and the middle of chord CD. What type of a triangle is this? Can you prove that its neighboring triangles are congruent?
b) If the radius $\mathrm{r}=5 \mathrm{~cm}$ and the chord $\mathrm{AB}=8 \mathrm{~cm}$, find the area of $\triangle \mathrm{AOB}$.
c) If $\angle \mathrm{OAB}=15^{0}$, how big are the $\operatorname{arcs}{ }^{\cap} \mathrm{AM}$ (with one check mark)
 and ${ }^{\wedge} \mathrm{ACP}$
3. In a circle, the chords $A B$ and $C D$ are intersecting and are perpendicular to each other. $A B$ splits CD in segments with size 3 cm and 7 cm . Find the distance from the center of the circle to the chord AB (the distance is a line perpendicular to AB).
