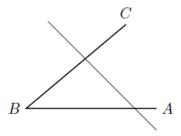
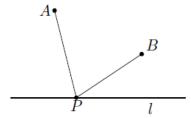

Math 6a/b: Constructions with ruler and compass, origami

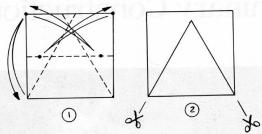
Today we discussed a quite different approach to geometric constructions: paper folding, or origami. Instead of using ruler and compass, we folded pieces of paper, starting with a square (or a rectangle). Attached pictures show how one can construct various figures such as equilateral triangles.


Homework 10 (December 9, 2018)

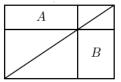
All constructions below (problem 1-5) are to be done using ruler and compass only!


1. How can you find the point on the railroad (line l in the figure below) which would be at equal distance from two villages (points A, B in the figure below)? [Hint: if this point is at equal distance from A,B, then one can draw a circle with center at this point which would go through A,B...)

2. Given an angle ∠ABC and a line l intersecting both sides of this angle, find a point P on l which would be at equal distance from the two sides of the angle (i.e., the two perpendiculars dropped from P to the sides of the angle would have the same length)

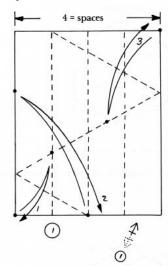


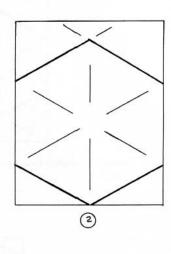
- 3. Given a triangle ABC, construct inside it a point which would be at equal distance from all three vertices of the triangle.
- 4. The figure below shows two villages A and B. A horseman starts at village A, goes to the river (line l in the figure) to let the horse drink, then goes to village B. How should he choose the point P on the river to make his trip as short as possible?



The following problems do not have to be submitted with the homework. Be sure to do them!

- 5. (a) Let ABC be a right triangle in which one of the legs is exactly 1/2 of the hypotenuse: BC = 1/2AB. What are the angles of such a triangle? (Hint: if you put two such triangles together, as indicated by the dotted line, what triangle do we get?)
 - b) The attached figure shows how you constructed in class an equilateral triangle from a square by folding. Can you explain why it does indeed give an equilateral triangle? Construct one again and check.




- c) How you can construct an equilateral triangle from a rectangle (by folding)?
- 6. The figure to the right shows a rectangle divided into several pieces. Which of the two rectangles, A or B, has larger area? (Fold a rectangle and check!)

7. The attached figure shows how one can make a regular hexagon from a rectangular piece of paper (we did similar folding in class). Can you explain why this does give a regular hexagon? Make one and check that it is indeed regular.

(funny double arrow below the first figure means "turn over and repeat step 1")

