## Math 6a/b: Constructions with ruler and compass

Here is a summary of operations we can do using a ruler and compass. You can freely use any of them in the problems below.

1. Construct the midpoint of a given segment $A B$
2. Construct the perpendicular bisector of segment $A B$, i.e. a line that goes through the midpoint of $A B$ and is perpendicular to $A B$.
3. Given a line $l$ and a point $A$ on $l$, construct a perpendicular to $l$ through $A$.
4. Given a line $l$ and a point $P$ outside of $l$, construct a perpendicular to $l$ through $P$.
5. Given an angle $A O B$, construct the angle bisector (i.e., a ray $O M$ such that $\angle A O M \cong$ $\angle B O M$ )

## Perpendicular bisector (symmetry line)

1.If two points $A, B$ are on a circle, then the center of this circle lies on perpendicular bisector to $A B$ (i.e., a line that goes through the midpoint of $A B$ and is perpendicular to $A B$ ).
2. If a circle is inscribed in the angle $A B C$, then the center of this circle lies on the angle bisector.


## Homework 9 (December 2, 2017)

All constructions below are to be done using ruler and compass only!

1. Given a circle, find its center.
2. Given a triangle $A B C$, construct a circle inscribed in the triangle.
3. Two concentric circles, where the circles have the same center and one has a larger radius, are crossed by a line at consecutive points $A, B, C$, and $D$. Prove that $A B=C D$ (Do not just describe it).
4. Six grasshoppers sit on a road. Every minute one grasshopper jumps 1 foot in one direction (along the road), and another grasshopper jumps 1 foot in the opposite direction. If initially the grasshoppers were at positions $1 \mathrm{ft}, 2 \mathrm{ft}, \ldots, 6 \mathrm{ft}$ (measured from some point on the road), is it possible that after some time they all will all gather at the same place on the road?
