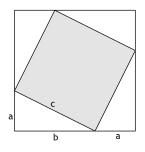
Math 5: Handout 15 Square Root. Pythagorean Theorem.


Square roots

- Square root of *a* is a number whose square is equal to *a*. For example: square root of 25 is 5, because $5^2 = 25$.
- Notation: square root of number *a* is commonly denoted \sqrt{a} .
- $\sqrt{ab} = \sqrt{a}\sqrt{b}$, but $\sqrt{a+b}$ is **not** equal to $\sqrt{a} + \sqrt{b}$.
- Square roots naturally appear in geometry:

Pythagorean theorem: In a right triangle with legs *a*, *b* and hypotenuse *c*, one has

$$a^2 + b^2 = c^2$$

or $c = \sqrt{a^2 + b^2}$ **Proof:** Consider the following picture:

In this square, the total area is

$$(a + b) \times (a + b) = a \times (a + b) + b \times (a + b) = a^{2} + ab + ab + b^{2} = a^{2} + 2ab + b^{2}$$

On the other hand, the area of each triangle is $\frac{1}{2}ab$, and the area of shaded square is c^2 . Thus, we get

$$a^{2} + 2ab + b^{2} = 4 \times \frac{1}{2}ab + c^{2}$$

which gives $a^2 + b^2 = c^2$.

For example, in a square with side 1, the diagonal has length $\sqrt{2}$.

It is possible — but not easy — to find a right triangle where all sides are whole numbers. The easiest such triangle is the triangle with sides 3, 4, 5.

Power $\frac{1}{2}$

We know how to raise numbers into whole powers:

$$a^n = a \times \cdots \times a.$$

But what is $a^{\frac{1}{2}}$?

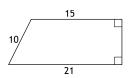
Example: Let's try to figure out what $4^{\frac{1}{2}}$ is:

$$4^{\frac{1}{2}} \times 4^{\frac{1}{2}} = 4^{\frac{1}{2} + \frac{1}{2}} = 4^{1} = 4.$$

We can see that $4^{\frac{1}{2}}$ must be a number, such that if we multiply it by itself, we get 4. But this is just a square root of 4! So, we get:

$$4^{\frac{1}{2}} = \sqrt{4}$$

In general, this is also true:


 $a^{\frac{1}{2}} = \sqrt{a}.$

Homework

- 1. Find the following square roots. If you can not find the number exactly, at least say between which two whole numbers the answer is, e.g., between 5 and 6.
 - a. $\sqrt{16}$ b. $\sqrt{81}$ c. $\sqrt{10,000}$ d. $\sqrt{10^8}$ e. $\sqrt{50}$
- 2. Can you find a right triangle where all sides are whole numbers and the hypotenuse is 13?
- 3. If, in a right triangle, one leg has length 1 and the hypotenuse has length 2, what is the other leg?

4. Find $\sqrt{2^6 \times 7^2}$; $\sqrt{\frac{1}{16}}$; $\sqrt{\frac{4}{9}}$;

5. Find the height and area of the figure below. Lengths of three sides are given; the two marked angles are right angles.

- 6. The side of an equilateral triangle is 1 m. Find its height and the area.
- 7. Take some positive number x < 100 and using calculator (or computer) calculate the number $\frac{x}{2} + \frac{1}{x}$. Call the result *x* and repeat the same calculation with the new *x*. Do it 10 times. Then take the result and square it. What did you get? Try to do the same thing starting with different numbers. Is it surprising?