## Lesson 7. Classwork

## WARM-UP

1. Compare without calculating:

| $57+29 \square 57+30$ | $57-29 \square 57-30$ | $58+30 \square 59+29$ |
| :--- | :--- | :--- |
| $65+18 \square 65+20$ | $65+18 \square 63+18$ | $65+18 \square 64+19$ |
| $47+18 \square 50+15$ | $47-16 \square 47-19$ | $80-19 \square 81-20$ |

2. There are two jars: a 7-liter and a 3-liter. Explain the meaning of the following expressions:

$$
7+3
$$

$\qquad$

7-3 $\qquad$

3. Continue pattern - add 3 more rectangles.

4.

Fill in the missing digits:


## REVIEW

5. Solve: Walter had 8 marbles. Then Lamont gave him some more marbles. Walter has 17 marbles now. How many marbles did Lamont give him?

## Given:

$\qquad$

## Problem:

$\qquad$
$\qquad$
$\qquad$
$\qquad$ Answer: Lamont gave Walter
6.

## Solve according to the example above:

a) There are twelve girls in a class of 25 students. How many boys are in the class?

Given: $\qquad$
Problem: $\qquad$
$\qquad$
$\qquad$
$\qquad$ Answer: $\qquad$
7. Express in cm and calculate:
$3 \mathrm{dm} 7 \mathrm{~cm}+5 \mathrm{dm} 9 \mathrm{~cm}=$ $\qquad$

$4 \mathrm{dm} 2 \mathrm{~cm}-2 \mathrm{dm} 5 \mathrm{~cm}=$ $\qquad$
$2 \mathrm{dm} 6 \mathrm{~cm}-19 \mathrm{~cm}=$ $\qquad$
$7 \mathrm{~m} 1 \mathrm{dm}+1 \mathrm{~m} 5 \mathrm{~cm}=$ $\qquad$

## NEW MATERIAL

## Commutative Property of Addition

Look at the equality: $30+10+5=$

1) First $30+10$, than add $5=$ $\qquad$
2) First $10+5$, than $30+$ result $=$ $\qquad$
Are the results the same? $\qquad$ Which is the correct way?

8. 

Calculate using commutative property of addition:
$6+15+4=$ $\qquad$ $=$ $\qquad$ $17+7+13+3=$ $\qquad$ $=$ $\qquad$
$2+21+19+8=$ $\qquad$ $1+35+19+5=$ $\qquad$ $=$ $\qquad$
$17+41+3+19=$ $\qquad$ $=$ $\qquad$ $28+13+12+7=$ $\qquad$ $=$ $\qquad$

Curves can be "open" and "closed".
Open curve is a curve with end points (in other words, the ends don't join up).


Close curve has no end points.

8.

Find all closed curves. List all closed curves you found here: $\qquad$
List here all open curves: $\qquad$ Using your pencil, make all "open" curves "closed".


In geometry, a polygonal chain is a connected series of line segments.
Polygonal chain can be "open" or "closed".
If three or more line segments form a closed loop it is called Polygon.

- The line segments forming the polygon are called sides.
- The point of junction of two line segments is called a vertex.

Number of vertices of a polygon is equal to the number of line segments or sides.


Different types of polygon:


Triangle No. of Sides: 3


Quadrilateral No. of Sides: 4


Pentagon No. of Sides: 5


Hexagon No. of Sides: 6


Heptagon
No. of Sides: 7


Octagon No. of Sides: 8


Polygon
(straight sides)


NOT a Polygon
(has a curve)


NOT a Polygon
(open, not closed)

## 9.

Find all curves and list them here: $\qquad$
Find all open polygonal chains and list them here: $\qquad$

10.

Find the intersection of curves $\boldsymbol{A B}$ and $\boldsymbol{C D}$. Mark the intersection with a point and label it $\boldsymbol{E}$.

11. The routes $\boldsymbol{K B} \boldsymbol{T}$ and $\boldsymbol{M} \boldsymbol{A} \boldsymbol{N}$ pass through forest.

a) Name the points in which those two routes intersect
b) Which intersection point should you pass to get from point $\boldsymbol{K}$ to point $\boldsymbol{M}$ ? $\qquad$
c) How many possible routes can you take to get from point $\boldsymbol{K}$ to point $\boldsymbol{N}$ ? $\qquad$

## Challenge yourself

The Four Colors theorem.
There is only one rule: Two regions that share a common edge cannot be colored the same. Having a common corner is OK.
13.
a) How many colors do you need to color a pattern of nine squares? Can you color it using only two colors?

b) How many colors do you need to color a pie divided into eight pieces? Into nine pieces?

c) How many different colors do you need to color the picture below?


## Did you know ...

The four-color theorem is one of the simplest mathematical problems to state and understand; still it took mathematicians over 100 years to prove.

The theorem states that if you try to color in a map, you only need four colors to complete it so that no two areas touching each other have the same color.

A number of false proofs and false counterexamples have appeared since the first statement of the four-color theorem in 1852.... The four color theorem was proved in 1976 by Kenneth Appel and Wolfgang Haken. It was the first major theorem to be proved using a computer.

The Four Colour Theorem was the first major theorem to be proved using a computer, having a proof that could not be verified directly by other mathematicians. Despite some worries about this initially, independent verification soon convinced everyone that the Four Colour Theorem had finally been proved. Details of the proof appeared in two articles in 1977.

