Change of Seasons

Video: http://www.youtube.com/watch?v=DD_8Jm5pTLk

Astronomers and scientists use the dates of equinoxes and solstices to mark the change of seasons.

Solstice conditions (Northern Hemisphere)

- At solstice (Latin: "sun"+"stand still"), the Earth's axis of rotation is fully tilted either toward or away from the Sun.
- Polar regions experience either 24-hour day or 24-hour night.
- The Sun is directly overhead at noon on one of the tropics.

December Solstice

Seasons in the Southern Hemisphere are opposite to those in the Northern Hemisphere.

Equinox conditions

- At equinox (Latin: "equal"+"night"), the Earth's axis of rotation is exactly at right angle to the direction of solar illumination.
- The circle of illumination passes through the North and South Poles.
- At noon, the Sun is directly overhead on the Equator.

Both hemispheres are equally illuminated.

 At both poles the Sun is seen at the horizon.

Observed path of the Sun

Length of Day and Night

- Graph shows variation of day length over the course of the year.
- Variation over latitude is shown by different color curves.

THE ATMOSPHERE

Atmosphere

from Greek ἀτμός [atmos] "vapor"and σφαῖρα [sphaira] "sphere"

- An <u>atmosphere</u>
 is a layer of gases
 surrounding a material
 body of sufficient mass
 that is held in place by
 the gravity of the body.
- The Earth's atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night.

- The atmosphere is a gas.
- The atmosphere is a **fluid**.
- ➤ The atmosphere has a mass of about 5.15×10¹⁸ kg.

The air is made up of *molecules*: particles that are in constant motion.

Evolution of the Atmosphere

- Reduced <u>primitive</u> atmosphere (stellar gas composition: H, He, CH₄, NH₃)
- Outgassing and the <u>second</u> atmosphere (mostly N₂, Ar, CO₂ – <u>still no oxygen!</u>)

The evolution of life and atmosphere are closely linked – life produces oxygen (photosynthesis) and cycles carbon (e.g. limestone).

 Oxidized modern atmosphere (mostly N₂, O₂, and very little CO₂...)

Atmospheric Gases

- Nitrogen 78%
- Oxygen 21%
- Argon .93%
- Water vapor 0 to 4%
 - clouds and precipitation

- Traces of neon, helium, methane, krypton, xenon, hydrogen, ozone, and...
- ...<u>carbon dioxide</u> .04% (year 2015)
 - keeps Earth warm and is used by plants to make food