

Lithosphere

Tectonic

Lithosphere: Sphere of Rock

- rigid <u>outer layer</u>
- made of crust and the uppermost part of the mantle
- broken into pieces called tectonic plates
- eight major tectonic plates (plus several minor)

Major Tectonic Plates

All tectonic plates move in different directions 1-2 inches per year.

Continental Drift

- In the late 19th and early 20th centuries, geologists assumed that the Earth's major features were fixed.
- <u>In 1912</u>, <u>Alfred Wegener</u> proposed that up until about 200 million years ago, all of the present continents were joined together into a single super-continent later called <u>Pangea</u>.

Continental Drift: Fossil Evidence 1937

Continental Drift: Debate

• <u>Fifty years long lively debate</u> started between "drifters" or "mobilists" (proponents of the theory) and "fixists" (opponents), during which the theory of plate tectonics was born.

• Early "weak" evidence:

- ➤ Parts of Scotland and Ireland contain rocks very similar to those found in Newfoundland and New Brunswick.
- ➤ The Caledonian Mountains of Europe and parts of the Appalachian Mountains of North America are very similar in structure and composition.

Strong geophysical evidence:

- Paleomagnetism, the rocks of different ages show a variable magnetic field direction consistent with continents movement.
- ➤ Late 1950s and early 60s data on the bathymetry of the deep ocean floors and the nature of the oceanic crust; evidence of seafloor spreading along the *mid-oceanic ridges*.

How do Plates Move?

- The driving forces of plate motion is an active subject of on-going research within geophysics.
- <u>Leading theory</u>: plates of lithosphere are moved around by convection in the underlying hot mantle.

Plate Movement Simulation (past 300 million years)

https://www.youtube.com/watch?v=IlnwyAbczog

Plate Movement Simulation

Past 1500 million years (full length simulation) https://www.youtube.com/watch?v=IlnwyAbczog

Same with oceans/landforms labeled https://www.youtube.com/watch?v=AsCYZ-k-0uc

Three types of plate boundary

Divergent

Convergent

Transform

Divergent Boundaries

Spreading ridges:

- as plates move apart, new material is erupted to fill the gap
- young crust is formed

What is magma and where does it come from?

Magma

 Partially molten rock found in high temperature, low pressure environments beneath the Earth's surface.

Upper mantle

PLUMES

Liquid

outer

core

- Develops and collects in magma chambers usually within several miles of the Earth's surface.
- May also rise in mantle plumes directly from the outer core/mantle boundary.

World's Ocean Ridges and Continental Rifts

The ocean floor is <u>not flat</u>. It has well-pronounced <u>mountain</u> <u>ridges</u> running along the spreading plate boundaries.

Iceland: an example of continental drift

Iceland has a divergent plate boundary running through its middle.

In fact, the island exists because of this feature!

Transform Boundaries

Plates <u>slide past</u> each other

San Andreas Transform Fault