ADVANCED PHYSICS CLUB

FEBRUARY 24, 2019

TODAY'S MEETING

After reviewing the homework from last time, we discussed a derivation of ellipticity of orbits for radial force which varies like $1/r^2$.

OVERVIEW OF THE DERIVATION OF ELLIPTICAL ORBITS

- 1. We reviewed that conservation of angular momentum implies the motion takes place in a plane.
- 2. We showed that when the force is $\mathbf{F} = -G_N \frac{mM}{r^2} \hat{r}$, there is a new conserved vector quantity

$$\mathbf{u} = \mathbf{v} - G_N \frac{mM}{L} \hat{\theta} \,,$$

where \mathbf{v} is the velocity vector, L is the magnitude of angular momentum and $\hat{\theta}$ is a unit vector in the plane of motion, perpendicular to the position vector \mathbf{r} and oriented in the direction of motion.

3. Taking the projection of the above conservation law onto the direction of $\hat{\theta}$ gives the equation for the trajectory

$$r(\theta) = \frac{R}{1 + e\cos(\theta)}$$

which is an ellipse with a focus at the origin.

HOMEWORK

- 1. A projectile is launched from the North pole tangentially to the surface of Earth at a speed v. How long will it take for it to fall back onto the Earth's surface? Assume the Earth is a perfect sphere and neglect air resistance. The three Kepler's laws are enough to solve this problem.
- 2. The conserved quantity **u** from above is closely related to the so-called Laplace-Runge-Lenz vector. You can read more about it on Wikipedia: https://en.wikipedia.org/wiki/Laplace-Runge-Lenz_vector. How are **u** and the Laplace-Runge-Lenz vector related?

FOR THE NEXT MEETING

The next club's meeting is at 2:40pm, room P-131, on Sunday, March 3.