ADVANCED PHYSICS CLUB

FEBRUARY 24, 2019

Today's meeting

After reviewing the homework from last time, we discussed a derivation of ellipticity of orbits for radial force which varies like $1 / r^{2}$.

Overview of the derivation of elliptical orbits

1. We reviewed that conservation of angular momentum implies the motion takes place in a plane.
2. We showed that when the force is $\mathbf{F}=-G_{N} \frac{m M}{r^{2}} \hat{r}$, there is a new conserved vector quantity

$$
\mathbf{u}=\mathbf{v}-G_{N} \frac{m M}{L} \hat{\theta}
$$

where \mathbf{v} is the velocity vector, L is the magnitude of angular momentum and $\hat{\theta}$ is a unit vector in the plane of motion, perpendicular to the position vector \mathbf{r} and oriented in the direction of motion.
3. Taking the projection of the above conservation law onto the direction of $\hat{\theta}$ gives the equation for the trajectory

$$
r(\theta)=\frac{R}{1+e \cos (\theta)},
$$

which is an ellipse with a focus at the origin.

Homework

1. A projectile is launched from the North pole tangentially to the surface of Earth at a speed v. How long will it take for it to fall back onto the Earth's surface? Assume the Earth is a perfect sphere and neglect air resistance. The three Kepler's laws are enough to solve this problem.
2. The conserved quantity \mathbf{u} from above is closely related to the so-called Laplace-Runge-Lenz vector. You can read more about it on Wikipedia: https://en.wikipedia.org/wiki/Laplace-Runge-Lenz_ vector. How are \mathbf{u} and the Laplace-Runge-Lenz vector related?

For the next meeting
The next club's meeting is at $2: 40 \mathrm{pm}$, room P-131, on Sunday, March 3.

