DIOPHANTINE EQUATIONS

FEB 24, 2019

Equations where all variables are only alowed to take integer values are called Diophintine equations. There is no general method of solving them, but there are some useful tricks.

Simple diophantine Equations

1. Solve the following equation: $2^{x}+7=y^{2}$
2. Find all positive integers x, y, z for which

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1
$$

3. Find all positive integers $x, y, z>1$ for which

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>1
$$

Pythagorean triples
A triple of positive integers a, b, c such that

$$
a^{2}+b^{2}=c^{2}
$$

is called a Pythagorean triple. A simplest such triple is $3,4,5$.
A Pythagorean triple is called primitive if $\operatorname{gcd}(a, b, c)=1$.
4. Let (a, b, c) be a primitve Pythagorean triple. Show that then one of the numbers a, b is even and the other is odd.
5. Let (a, b, c) be a primitve Pythagorean triple, with a even and b odd. Show that then one can find two relatively prime integers m, n such that $a=2 m n, b=m^{2}-n^{2}, c=m^{2}+n^{2}$. Use these formulas to construct some examples of Pythagorean triples.

Pell's equation

Pell's equation is the following Diophantine equation:

$$
x^{2}-d y^{2}=1
$$

where d is some given positive squarefree integer (i.e., not divisible by any square except 1).
Study of solutions of Pell's equation is closely related to the study of the following set

$$
R=\{a+b \sqrt{d}, a, b \in \mathbb{Z}\} \subset \mathbb{R}
$$

so we begin with some problems about R.
7. Show that R is closed under multiplication, addition.
8. For a number $r=a+b \sqrt{d} \in R$, denote $\bar{r}=a-b \sqrt{d}$ and $N(r)=r \bar{r}=a^{2}-d b^{2}$. Prove that $\overline{r_{1} r_{2}}=\overline{r_{1}} \cdot \overline{r_{2}}$, and $N\left(r_{1} r_{2}\right)=N\left(r_{1}\right) N\left(r_{2}\right)$.
9. Show that if $N(r)= \pm 1$, then r^{-1} is also in R.
10. Deduce from the previous problems that the set $U=\{r \in R \mid N(r)=1\}$ is closed under multiplication and operation of taking inverses. In particular, if $r \in U$, then for anu integer n, we have $r^{n} \in U$.
11. Show that if a Pell's equation has at least one solution, then it has infinitely many solutions.
12. Construct infinitely many solutions of the following equations: $x^{2}-2 y^{2}=1 ; x^{2}-5 y^{2}=1$.
(In fact, it is known that for any d, Pell's equation has infinitely many solutions. Moreover, all of them can be obtained from a single solution (a, b) by writing $r=a+b \sqrt{d}$ and then considering $\pm r^{n}$ for $n \in \mathbb{Z}$. This, however, is much more difficult to prove.]

