MORE NUMBER THEORY PROBLEMS

FEB 24, 2019

Useful things to know from number theory

Here is a short listing of elementary results which can be useful when solving number theory problems. Detailed exposition can be found in many places, including SchoolNova class archive.

 \bullet Euclid algorithm. GCD and LCM. Fact: for given a, b, an integer m can be written in the form

$$m = ax + by$$

if and only if m is the multiple of gcd(a, b).

- Divisibility. If ax is divisible by b, and a, b are relatively prime, then x is divisible by b. If a, b are relatively prime, then any common multiple of a, b is a multiple of ab. In particular, lcm(a, b) = ab.
- Prime factorization. Counting the number of divisors and sum of divisors from prime factorization.
- Congruences and remainders mod n. Invertible remainders. Remainders of $a^m \mod n$ repeat periodically.
- Chinese remainder theorem

Some problems from last time

- 1. What is the smallest positive integer n such that 2013^n ends in 01 (i.e. the rightmost two digits of 2013^n are 01)? What if we want the last three digits to be 001?
- 2. What is the largest positive integer that cannot be expressed as a sum of non-negative integer multiples of 13 and 17?

What is the largest positive integer that cannot be expressed as a sum of non-negative integer multiples of 13, 17 and 23?

More number theory problems

In all the problems below, all numbers are positive integers.

- 1. Find all solutions of $x^2 = y^2 + 23$
- **2.** Find all solutions of $x^2 + 84x + 2008 = y^2$
- **3.** Find all primes p such that 71p + 1 is a perfect square.
- **4.** For which n both n + 76 and n 76 are perfect cubes?
- **5.** Find the largest k such that 3^{11} can be written as sum of k consecutive integers.
- **6.** Let n = 1001. How many numbers are divisors of n^3 but not divisors of n^2 ?
- 7. How many divisors does the number 17! have?
- **8.** (a) Show that $2^{2019} + 1$ is divisible by 3.
 - (b) Suppose that $2^n + 1$ is a prime for some positive integer n. Show that n must be a power of 2.
- **9.** How many pairs of numbers (a, b) satisfy

$$a^2 + b^2 = ab(a+b)$$

- 10. [From 2019 AMC12B] How many sequences of 0s and 1s of length 19 are there that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s?
- *11. Let $p_1 \dots P_n$ be distinct primes greater than 3. Prove that then the number

$$2^{p_1...p_n} + 1$$

has at least 4^n divisors.