SOME NUMBER THEORY PROBLEMS

FEB 3, 2019

USEFUL THINGS TO KNOW FROM NUMBER THEORY

Here is a short listing of elementary results which can be useful when solving number theory problems. Detailed exposition can be found in many places, including SchoolNova class archive.

 \bullet Euclid algorithm. GCD and LCM. Fact: for given a, b, an integer m can be written in the form

$$m = ax + by$$

if and only if m is the multiple of gcd(a, b).

- Divisibility. If ax is divisible by b, and a,b are relatively prime, then x is divisible by b. If a,b are relatively prime, then any common multiple of a,b is a multiple of ab. In particular, lcm(a,b) = ab.
- Prime factorization. Counting the number of divisors and sum of divisors from prime factorization.
- Congruences and remainders mod n. Invertible remainders. Remainders of $a^m \mod n$ repeat periodically.
- Chinese remainder theorem

SIMPLE PROBLEMS

- 1. How many four-digit numbers N have the property that the three-digit number obtained by removing the leftmost digit is equal to one ninth of N?
- **2.** Find the remainder upon the division of 17^{2019} by 7.
- **3.** In how many zeroes does the number 100! end?
- **4.** Prove that $2222^{5555} + 5555^{2222}$ is divisible by 7
- **5.** How many perfect squares are divisors of the product $1! \cdot 2! \cdots 9!$?
- **6.** If p, q and r are primes with pqr = 7(p+q+r), find p+q+r.
- 7. (a) Show that remainder upon division of $2^a 1$ by $2^b 1$ is equal to $2^r 1$, where r is the remainder upon division of a by b. [Hint: if a = qb + r, then $2^a 1 = 2^{qb+r} 2^r + 2^r 1$.]
 - (b) Use Euclid's algorithm to show that $gcd(2^m 1, 2^n 1) = 2^{gcd(m,n)} 1$
 - (c) Find $gcd(2^{2019} 1, 2^{1968} 1)$

HARDER PROBLEMS

For those who know how to do all the previous ones.

- 1. What is the smallest positive integer n such that 2013^n ends in 01 (i.e. the rightmost two digits of 2013^n are 01)? What if we want the last three digits to be 001?
- 2. What is the largest positive integer that cannot be expressed as a sum of non-negative integer multiples of 13 and 17?

What is the largest positive integer that cannot be expressed as a sum of non-negative integer multiples of 13, 17 and 23?