FORMAL POWER SERIES AND GENERATING FUNCTIONS

DECEMBER 2, 2018

Formal power series

A formal power series is an expression of the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

A special case of a formal power series is a polynomial.
Note that it is not a function: in generla, we can't substitute a numerical value for x, as it would give an infinite sum. However, we can still perfectly well add and multiply such formal series.

For example,

$$
\begin{aligned}
& (1-x)\left(1+x+x^{2}+x^{3}+\ldots\right)=1 \\
& \left(1+x+x^{2}+x^{3}+\ldots\right)^{2}=1+2 x+3 x^{2}+\ldots
\end{aligned}
$$

Because of this, we will frequently write $\frac{1}{1-x}$ meaning the power series $1+x+x^{2}+\ldots$

Generating function

Let $a_{n}, n=0,1, \ldots$ be a sequence. The generating function for this sequence is the formal power series

$$
F(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

It turns out that in many cases, it is easier to find the generating function then the formula for the terms of the sequence - and of course, knwing the generating fucntion determines the sequence.

Problems

1. For every non-empty subset $S \subset\{1, \ldots, n\}$, denote by $p(S)$ the product of inverses of elements of S. What is the sum of $p(S)$ over all such subsets S ?
2. Find the product of the following formal power series:

$$
\left(1+x+x^{2}+x^{3}+\ldots\right)\left(1-x+x^{2}-x^{3}+\ldots\right)
$$

3. Compute the generating function of the following sequences:
(a) $a_{n}={ }_{m+n} C_{m}$ (where m is some fixed number).
(b) $a_{n}={ }_{n} C_{m}$
4. (This problem is for people familiar with the notion of derivative.)

Prove that for a formal power series $f(x)=\sum a_{n} x^{n}$, we have

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

5. Let a_{n} be the number of solutions of equation $x_{1}+x_{2}+\cdots+x_{k}=n$ (all x_{i} must be non0-negative integers). Let $F(x)$ be the generating function for this sequence.
(a) Prove

$$
F(x)=\left(1+x+x^{2}+\ldots\right)^{k}=\frac{1}{(1-x)^{k}}
$$

(b) If you have done the previous problem, use it to find a formula for a_{n}.
6. Let $F(x)=F_{0}+F_{1} x+F_{2} x^{2}+\ldots$ be the generating series for the Fibonacci numbers: $F_{0}=0, F_{1}=1$, $F_{k+1}=F_{k}+F_{k-1}$. Prove that

$$
F(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\Phi x}-\frac{1}{1-\bar{\Phi} x}\right)
$$

where

$$
\Phi=\frac{1+\sqrt{5}}{2}, \quad \bar{\Phi}=\frac{1-\sqrt{5}}{2}
$$

and use it to find an explicit formula for F_{n}.
[Hint: can you prove that $F(x)=\left(x+x^{2}\right) F(x)$?]
7. Let $d(n)$ be the number of ways to write n as a sum of distinct non-negative integers, and $l(n)$ - the number of ways to write n as a sum of odd non-negative integers. (In both cases, order of summands doesn't matter). By definition, we let $d(0)=l(0)=1$.

Prove:
(a) $d(0)+d(1) x+d(2) x^{2}+\cdots=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \ldots$
(b) $l(0)+l(1) x+l(2) x^{2}+\cdots=(1-x)^{-1}\left(1 x^{3}\right)^{-1}\left(1 x^{5}\right)^{-1} \cdots$
(c) $l(n)=d(n)$.

