Homework 16.

How does a current produce magnetic field. Biot-Savart-Laplace law.

We are going to discuss the source of magnetic field. As we learned before magnetic field is created by a moving charge. If a charge particle (or particles) is moving with respect to you, you can register magnetic field (if you have a suitable device). In other words, the source of magnetic field is current. Last class we started discussing how we can calculate the magnetic field created by a very short piece of wire. As long as you know the magnetic field created by a small straight piece of wire, we can find the magnetic field created by a wire loop of arbitrary shape, because we can represent this loop as a connection of small straight segments. We will discuss it in more details this Sunday.

Here am going to give you one example of application of this method - the magnetic field created by a infinitely long straight wire.

Figure 1.
Magnetic field is proportional to the inverse distance to the wire:

$$
\begin{equation*}
B(r)=\frac{\mu_{0}}{4 \pi} \frac{2 I}{r} \tag{1}
\end{equation*}
$$

Here I is the current in the wire, r is the distance to the wire and m 0 is a constant which is called magnetic constant $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$.

Now we will discuss how it is possible to calculate the magnetic field created in a certain point (say, A) by an arbitrary shaped wire with current I (see Figure 2, left).

Figure 2.
To do that we could approximate the wire as a chain of very short straight segments (Figure 1, right). The total magnetic field B in point A is the vector sum of the magnetic fields ΔB created by each of the segment in point A (this is called "the superposition principle"). If we can calculate $\Delta \mathrm{B}$ from each segment, then, in principle, the problem could be solved. In general case of an arbitrary shaped wire it is rather difficult and one will need a computer to perform the calculation. But, in some special cases, the calculation is really easy (as we will see later).

How to calculate $\Delta \mathrm{B}$? Let us chose an arbitrary segment of length Δl (shown in red in Figure 1, right). Then, let us draw the line connecting point A with the center of the segment. The vector from the center of the segment to point A is \boldsymbol{r}. We have to chose segments short enough, so $\Delta \boldsymbol{l} \ll \mathbf{r}$. Let us denote the angle between this line and the segment as $\boldsymbol{\alpha}$ (Figure 2).

Figure 2.
Then, we can calculate $\Delta \mathrm{B}$ using the following expression:

$$
\begin{equation*}
\Delta B=\frac{\mu_{0}}{4 \pi} \frac{I \cdot \Delta l}{r^{2}} \sin \alpha \tag{1}
\end{equation*}
$$

In fact, formula 1 looks familiar. It can be written as already familiar to us cross product:

$$
\begin{equation*}
\Delta B=\frac{\mu_{0}}{4 \pi} \frac{I}{r^{3}}[\overrightarrow{\Delta l} \times \vec{r}] \tag{2}
\end{equation*}
$$

Note that vector $\boldsymbol{\Delta l}$ is directed as the current. Formula (2) is called Biot-Savart-Laplace law. The direction of $\Delta \mathrm{B}$ in point A we can find using the right hand rule. In general, all segments in Figure 1 have different length and orientation. In addition, the distances from each segment to point A are different. That is why it is generally a difficult problem. But, in some cases, as I mentioned, one
can obtain the solution relatively easy - just following the procedure and using logic. As an example - the homework problem below:

Problem:

1. There are two parallel wires with current \boldsymbol{I} (directed to the same side) and length \boldsymbol{L}. The distance between wires is \boldsymbol{R}. Find the formula for the force exerted by the wires to each other. Make a picture and show the direction of force.
2. Find magnetic field in a center of a round wire loop of radius \boldsymbol{R} and with current \boldsymbol{I}.
