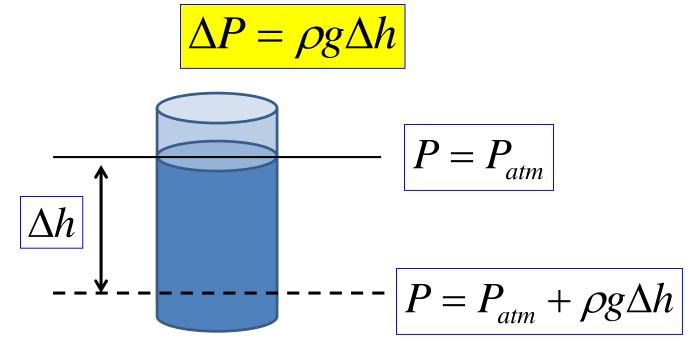
Pressure = $\frac{Force}{Area}$

Units of Pressure:

 $1Pa = 1\frac{N}{m^2}$ (standard SI unit called Pascal) $1bar = 100kPa = 10^5 Pa$ Atmospheric Pessure is veruy close to 1 Bar : 1atm ≈ 1.01bar


Pressure in fluids

• Pascal's Principle:

"Pressure in static fluid is transmitted uniformly in all directions"

P = const (static fluid, no gravity)

• **Hydrostatic Pressure.** Due to gravity, the pressure increases as you go deeper in fluid:

Homework

The figure shows the famous experiment conducted in German city of Magdeburg in 1656. Air has been pumped out of a hollow sphere made of two separate halves. After that, the hemispheres could not be separated by two strong horses. **Why?** How much force would be needed to separate them, if the sphere radius is 25 cm? For simplicity, imagine that hemispheres are nearly flat disks.

