Travelling wave

This wave moves to the positive direction of \boldsymbol{x} with speed \boldsymbol{s} :

$$
s=\frac{\lambda}{T}=\lambda f
$$

Oscillations	Wave
Period $[\mathrm{s}]:$	Wavelength $[\mathrm{m}]:$
T	λ

Standing waves

Wave moving in ' + ' direction + Wave moving in ' - ' direction $=$ Standing Wave

$$
\lambda=\frac{L n}{2}, \quad n=1,2,3 \ldots
$$

Homework

Problem 1.

Cellphone uses frequency 900 mHz . What is the wavelength of its radio signal?

Problem 2

Use the dimensional analysis (method of units) to find the speed of a wave propagating along a stretched string. Note that it is not the speed of sound in the material of the string. The speed you need to find depends on the tension force F, mass of the string M, and its length L.

