Work and Kinetic Energy

Starting with the 2nd Newton's Law:

$$F = ma$$

One can derive another important result:

"Change in kinetic energy is equal to the mechanical work done by all forces"

$$\Delta K = W$$

$$K = \frac{mv^2}{2}$$
, is called Kinetic Energy of an object $W = F\Delta x$, is called Mechanical Work

(Work = Force x Displacement)

Homework

a) A car of mass m=2000~kg moves at speed v=30m/s when suddenly the driver applies breaks. Find the distance the car will travel before coming to a complete stop, if friction coefficient is $\mu=0.5$.

Please use the Kinetic Energy theorem ($\Delta K=W$) to solve it. Remember that friction force is F= μN , where N is normal reaction.

b) Similar to part (a), the driver applies breaks when speed of the car is v=30m/s. But after travelling 10 m, the car gets to icy road where the friction is very low. What will be the speed of the car at that moment?