Newton’s Law of Gravity

Two masses, m_{1} and m_{2}, experience gravitational attractive force to each other, that depends on distance between them, r :

$$
F=-\frac{G m_{1} m_{2}}{r^{2}} ; \quad G=6.7 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

G is called Gravitational Constant.

Homework

a) By using Newton's law of gravity, find the gravitational acceleration on the surface of a planet with mass M and radius R . For doing this, consider an apple of mass m . Its weight is mg . But is also must be equal to Newton's gravitational force.
b) Imagine that you discovered a planet with the same density as Earth, but its radius is twice as big. What will be the value of g on that planet?

