Algebra.

Trigonometric form of complex numbers. Geometric interpretation.

Let us consider complex numbers with the absolute value of 1,

$$z_1 = x_1 + iy_1$$
, $|z_1|^2 = z_1\overline{z_1} = x_1^2 + y_1^2 = 1$.

There is an obvious one-to-one correspondence between such numbers and points $Z_1(x_1, y_1)$ on a circle of unit radius. Hence, we can express such numbers in terms of an angle, φ , parameterizing points on the unit circle,

 $z_1 = x_1 + iy_1 = \cos \varphi + i \sin \varphi.$

More generally, any complex number, z = x + iy, whose absolute value is $|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2} = r$, can be written in the trigonometric form as, $z = x + iy = r(\cos \varphi + i \sin \varphi)$.

Geometrically, it is represented by a point Z(x, y) on a circle of radius r = |z|. Position of this point is specified by an angle, φ , which is conventionally measured counterclockwise from the positive direction of the *X*-axis. Angle φ is called the argument of the complex number *z* and is denoted $\varphi = Arg(z)$. Thus, instead of describing a complex number by its real and imaginary part, i.e. its coordinates, (x, y), we can describe it by its magnitude and argument (polar coordinates), (r, φ) , where $r \ge 0$ and $0 \le \varphi = Arg(z) < 360^{\circ}$.

It is now easy to prove the following important property of the multiplication of complex numbers.

Theorem. When we multiply two complex numbers, magnitudes multiply and arguments add,

$$|z_1z_2| = |z_1||z_2|$$
, $Arg(z_1z_2) = (Arg(z_1) + Arg(z_2)) \mod 360^\circ$.

Proof. Let $Arg(z_1) = \varphi_1$ and $Arg(z_2) = \varphi_2$, so $z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)$ and $z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2)$. Perform the multiplication directly,

$$z_1 z_2 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)|z_2|(\cos \varphi_2 + i \sin \varphi_2) =$$

$$|z_1||z_2|(\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2 + i(\sin\varphi_1\cos\varphi_2 + \cos\varphi_1\sin\varphi_2))$$

= $|z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$

Complex numbers whose arguments would differ by multiples of 360° are identical and correspond to the same point on the complex plane. Hence, the argument is computed *mod* 360°, ensuring that $0 \le \varphi_1 + \varphi_2 < 360^\circ$.

Theorem. Multiplication of a complex number, $z = x + iy = r(\cos \varphi + i \sin \varphi)$, by a complex number of unit magnitude and argument ψ ,

$$z_{\psi} = x_{\psi} + i y_{\psi} = \cos \psi + i \sin \psi,$$

corresponds to a counterclockwise rotation of the point, Z(x, y), on the complex plane, by an angle ψ ,

$$|zz_{\psi}| = r, Arg(zz_{\psi}) = \varphi + \psi.$$

Proof. Indeed, perform the multiplication directly,

$$zz_{\psi} = (x + iy)(x_{\psi} + iy_{\psi}) = r(\cos\varphi + i\sin\varphi)(\cos\psi + i\sin\psi)$$

= $r(\cos\varphi\cos\psi - \sin\varphi\sin\psi + i(\sin\varphi\cos\psi + \cos\varphi\sin\psi))$
= $r(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$

It is clear that multiplication by a complex number with magnitude r' and argument ψ is equivalent to the combination of multiplication by a number of unit magnitude and argument ψ , and y the real number r'.

Theorem. Multiplication of a complex number, z = x + iy, by a complex number with magnitude r' and argument ψ ,

$$w = r'(\cos\psi + i\sin\psi),$$

results in a point on the complex plane, which is obtained from the point Z(x, y) by the combination of a rotation by angle ψ and a homothety (rescaling) with scale factor r'.

Multiplication of all complex numbers by a complex number $w = r'(\cos \psi + i \sin \psi)$ is a transformation of the complex plane, which maps complex plane on itself. Identifying multiplication by a complex number with such transformation, we can state the following.

Theorem. Multiplication by a complex number with magnitude r' and argument ψ , $w = r'(\cos \psi + i \sin \psi)$, is a combination of rotation by angle ψ and homothety (rescaling) with scale factor r'.

De Moivre's formula.

Theorem. The formula named after Abraham de Moivre states that for any complex number, $z = x + iy = r(\cos \varphi + i \sin \varphi)$, and for any integer $n \in \mathbb{N}$,

$$z^n = \left(r(\cos\varphi + i\sin\varphi)\right)^n = r^n(\cos n\varphi + i\sin n\varphi)$$

Proof 1 (Mathematical induction).

- 1. Base case, n = 1: $z^1 = r(\cos \varphi + i \sin \varphi)$ is true.
- 2. I(n) => I(n + 1). Assume $z^n = r^n(\cos n\varphi + i \sin n\varphi)$ is true. Then,

$$z^{n+1} = z \cdot z^n = r(\cos\varphi + i\sin\varphi) \cdot (r(\cos\varphi + i\sin\varphi))^n$$

= $r(\cos\varphi + i\sin\varphi)r^n(\cos n\varphi + i\sin n\varphi)$
= $r^{n+1}(\cos\varphi\cos n\varphi - \sin\varphi\sin n\varphi)$
+ $i(\sin\varphi\cos n\varphi + \cos\varphi\sin n\varphi))$
= $r^{n+1}(\cos(n+1)\varphi + i\sin(n+1)\varphi)$

Proof 2 (Geometrical).

 $z^{n} = (r(\cos\varphi + i\sin\varphi))^{n} = r(\cos\varphi + i\sin\varphi)r(\cos\varphi + i\sin\varphi)\dots r(\cos\varphi + i\sin\varphi)$ $i\sin\varphi$

By property of the multiplication of complex numbers, absolute values multiply, while arguments add. Therefore,

 $|z^n| = |z|^n = r^n$, and $Arg(z^n) = nArg(z) = n\varphi$, wherefrom it follows that $z^n = r^n(\cos n\varphi + i \sin n\varphi)$.

<u>n-th root.</u>

The formula of de Moivre allows us to compute n -th root of a complex number. Suppose we want to solve the equation,

$$w^n = z$$

where $w, z \in \mathbb{C}$, so w is the *n*-th root of z. According to de Moivre's formula, if $w = |w|(\cos \psi + i \sin \psi)$, then $w^n = |w|^n(\cos n\psi + i \sin n\psi)$. Denoting $z = r(\cos \varphi + i \sin \varphi)$, we can rewrite the equation as,

$$w^n = |w|^n (\cos n\psi + i \sin n\psi) = r(\cos \varphi + i \sin \varphi)$$

One obvious solution is $r = |w|^n$ and $\varphi = n\psi$, $w = \sqrt[n]{r} \left(\cos \frac{\varphi}{n} + i \sin \frac{\varphi}{n} \right)$. However, because $\varphi = Arg(z) = Arg(w^n)$ and $\psi = Arg(w)$ are determined modulo 360° (2π radians), there are other solutions, too, satisfying the above equation, such as $w = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi}{n} + i \sin \frac{\varphi + 2\pi}{n} \right)$. Generally, we must have $r = |w|^n$, and $\varphi = Arg(z) = Arg(w^n) \mod 360^\circ = nArg(w) \mod 360^\circ = n\psi \mod 360^\circ$. Altogether, there are *n* solutions,

$$w = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), 0 \le k < n$$

This is a special case of the following extremely important result, called the fundamental theorem of algebra.

Theorem. Any polynomial with complex coefficients of degree *n* has exactly *n* roots (counting with multiplicities).

There is no simple proof of this theorem (and, in fact, no purely algebraic proof: all the known proofs use some geometric arguments).

In particular, since any polynomial with real coefficients can be considered as a special case of a polynomial with complex coefficients, this shows that any real polynomial of degree *n* has exactly *n* complex roots.