Geometry.

Solving vector problems.

Problem. In a pentagon $A B C D E, M, K, N$ and L are the midpoints of the sides $A E, E D, D C$, and $C B$, respectively. F and G are the midpoints of thus obtained segments $M N$ and $K L$ (see Figure). Show that the segment $F G$ is parallel to $A B$ and its length is $1 / 4$ of that of $A B,|F G|=1 / 4|A B|$.

Solution. Express $\overrightarrow{F G}$ via sides of the pentagon,
$\overrightarrow{F G}=\frac{1}{2} \overrightarrow{N M}+\frac{1}{2} \overrightarrow{E A}+\overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}+\frac{1}{2} \overrightarrow{L K}$,
$\overrightarrow{N M}=\frac{1}{2} \overrightarrow{C D}+\overrightarrow{D E}+\frac{1}{2} \overrightarrow{E A}$,

A
$\overrightarrow{L K}=\frac{1}{2} \overrightarrow{B C}+\overrightarrow{C D}+\frac{1}{2} \overrightarrow{D E}$.
$\overrightarrow{F G}=\frac{1}{2}\left(\frac{1}{2} \overrightarrow{C D}+\overrightarrow{D E}+\frac{1}{2} \overrightarrow{E A}\right)+\frac{1}{2} \overrightarrow{E A}+\overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}+\frac{1}{2}\left(\frac{1}{2} \overrightarrow{B C}+\overrightarrow{C D}+\frac{1}{2} \overrightarrow{D E}\right)$, or,
$\overrightarrow{F G}=\frac{3}{4} \overrightarrow{B C}+\frac{3}{4} \overrightarrow{C D}+\frac{3}{4} \overrightarrow{D E}+\frac{3}{4} \overrightarrow{E A}+\overrightarrow{A B}=\frac{3}{4}(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D E}+\overrightarrow{E A})+\frac{1}{4} \overrightarrow{A B}$
Or, $\overrightarrow{F G}=\frac{1}{4} \overrightarrow{A B}$, since $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D E}+\overrightarrow{E A}=0$.
Problem. Three equilateral triangles are erected externally on the sides of an arbitrary triangle $A B C$. Show that triangle $O_{1} O_{2} O_{3}$ obtained by connecting the centers of these equilateral triangles is also an equilateral triangle (Napoleon's triangle, see Figure).

Solution. Denote $|\mathrm{AB}|=\mathrm{c},|\mathrm{BC}|=\mathrm{a},|\mathrm{AC}|=\mathrm{b}$. Let us find the side $\left|O_{2} O_{3}\right|$. Express $\overrightarrow{O_{2} O_{3}}=\overrightarrow{{A O_{3}}}-\overrightarrow{A O_{2}}$, or,
$\overrightarrow{O_{2} O_{3}}=\frac{1}{2} \overrightarrow{A B}+\overrightarrow{C^{\prime} O_{3}}-\frac{1}{2} \overrightarrow{A C}-\overrightarrow{B^{\prime} O_{2}}$.

Note, that $\left|\overrightarrow{B^{\prime} O_{2}}\right|=b \frac{\sqrt{3}}{6}$, and $\left|\overrightarrow{C^{\prime} O_{3}}\right|=c \frac{\sqrt{3}}{6}$. Also, $(\overrightarrow{A B} \cdot \overrightarrow{A C})=b c \cos \alpha$, $\left(\overrightarrow{A B} \cdot \overrightarrow{B^{\prime} O_{2}}\right)=\left(\overrightarrow{A C} \cdot \overrightarrow{C^{\prime} O_{3}}\right)=b c \frac{\sqrt{3}}{6} \cos \left(90^{\circ}+\alpha\right)=-\frac{1}{2 \sqrt{3}} b c \sin \alpha$, and $\left(\overrightarrow{C^{\prime} O_{3}} \cdot \overrightarrow{B^{\prime} O_{2}}\right)=\frac{1}{12} b c \cos \left(180^{\circ}-\alpha\right)=-\frac{1}{12} b c \cos \alpha$, where $\alpha=\widehat{B A C}$. Then,
$\left|\overrightarrow{O_{2} O_{3}}\right|^{2}=\frac{1}{4}|\overrightarrow{A B}|^{2}+\left|\overrightarrow{C^{\prime} O_{3}}\right|^{2}+\frac{1}{4}|\overrightarrow{A C}|^{2}+\left|\overrightarrow{B^{\prime} O_{2}}\right|^{2}-\frac{1}{2}(\overrightarrow{A B} \cdot \overrightarrow{A C})$
$-\left(\overrightarrow{A B} \cdot \overrightarrow{B^{\prime} O_{2}}\right)-\left(\overrightarrow{A C} \cdot \overrightarrow{C^{\prime} O_{3}}\right)-2\left(\overrightarrow{C^{\prime} O_{3}} \cdot \overrightarrow{B^{\prime} O_{2}}\right)$, or,
$\left|\overrightarrow{O_{2} O_{3}}\right|^{2}=\frac{1}{4}\left(c^{2}+\frac{1}{3} c^{2}+b^{2}+\frac{1}{3} b^{2}-2 b c \cos \alpha+\frac{4}{\sqrt{3}} b c \sin \alpha+\frac{2}{3} b c \cos \alpha\right)$,
$\left|\overrightarrow{O_{2} O_{3}}\right|^{2}=\frac{1}{3} c^{2}+\frac{1}{3} b^{2}-\frac{1}{3} b c \cos \alpha+\frac{1}{\sqrt{3}} b c \sin \alpha$.
Now, using the Law of cosines, $2 b c \cos \alpha=b^{2}+c^{2}-a^{2}$, and the Law of sines, $\sin \alpha=\frac{a}{2 R^{2}}$, where R is the radius of the circumcircle, we obtain $\left|\overrightarrow{O_{2} O_{3}}\right|^{2}=$ $\frac{1}{6} a^{2}+\frac{1}{6} b^{2}+\frac{1}{6} c^{2}+\frac{a b c}{2 \sqrt{3} R}$. Obviously, the same expression holds for the sides $\left|O_{1} O_{3}\right|$ and $\left|O_{1} O_{2}\right|$. Hence, triangle $O_{1} O_{2} O_{3}$ is equilateral.

Problem. Let A, B and C be angles of a triangle $A B C$.
a. Prove that $\cos A+\cos B+\cos C \leq \frac{3}{2}$.
b. *Prove that for any three numbers, m, n, p, $2 m n \cos A+2 n p \cos B+2 p m \cos C \leq m^{2}+$ $n^{2}+p^{2}$

Solution. Let vectors $\vec{m}, \vec{n}, \vec{p}$ be parallel to $\overrightarrow{A C}, \overrightarrow{B A}$ and $\overrightarrow{C B}$, respectively, as in the Figure. Then,

$(\vec{m}+\vec{n}+\vec{p})^{2}=m^{2}+n^{2}+p^{2}-2 m n \cos A-2 n p \cos B-2 m p \cos C$
wherefrom immediately follows that,
$2 m n \cos A+2 n p \cos B+2 p m \cos C \leq m^{2}+n^{2}+p^{2}$.
The statement in part (a) follows from the above for $m=n=p=1$.

Problem. Point A^{\prime} divides the side $B C$ of the triangle $A B C$ into two segments, $B A^{\prime}$ and $A^{\prime} C$, whose lengths have the ratio $\left|B A^{\prime}\right|:\left|A^{\prime} C\right|=m: n$. Express vector $\overrightarrow{A A^{\prime}}$ via vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Find the length of the Cevian $A A^{\prime}$ if the sides of the triangle are $|A B|=c,|B C|=a$, and $|A C|=b$.

Solution. It is clear from the Figure, that $\overrightarrow{B A^{\prime}}=\frac{m}{n} \overrightarrow{A^{\prime} C}=\frac{m}{m+n} \overrightarrow{B C}$, and $\overrightarrow{C A^{\prime}}=\frac{n}{m+n} \overrightarrow{C B}=\frac{n}{m+n}(\overrightarrow{A B}-\overrightarrow{A C})$. Therefore,
$\overrightarrow{A A^{\prime}}=\overrightarrow{A C}+\overrightarrow{C A^{\prime}}=\overrightarrow{A C}+\frac{n}{m+n}(\overrightarrow{A B}-\overrightarrow{A C})=\frac{n}{m+n} \overrightarrow{A B}+$ $\frac{m}{m+n} \overrightarrow{A C}$.

Or, we can obtain the same result as

$\overrightarrow{A A^{\prime}}=\overrightarrow{A B}+\overrightarrow{B A^{\prime}}=\overrightarrow{A B}+\frac{m}{m+n}(\overrightarrow{A C}-\overrightarrow{A B})=\frac{n}{m+n} \overrightarrow{A B}+\frac{m}{m+n} \overrightarrow{A C}$.
For the length of the segment $A A^{\prime}$ we have,
$\left|A A^{\prime}\right|^{2}=\overrightarrow{A A^{\prime 2}}=\left(\frac{n}{m+n} \overrightarrow{A B}+\frac{m}{m+n} \overrightarrow{A C}\right)^{2}=\frac{n^{2} c^{2}+m^{2} b^{2}+(n m) 2 b c \cos \overrightarrow{B A C}}{(m+n)^{2}}$. Using the Law of cosines, we write $2 b c \cos \widehat{B A C}=b^{2}+c^{2}-a^{2}$, and obtain the final result,
$\left|A A^{\prime}\right|^{2}=\frac{\left(n^{2}+n m\right) c^{2}+\left(m^{2}+n m\right) b^{2}-(m n) a^{2}}{(m+n)^{2}}=\frac{m b^{2}+n c^{2}}{m+n}-\frac{m n a^{2}}{(m+n)^{2}}$.
Or, equivalently, $(m+n)\left|B B^{\prime}\right|^{2}=m b^{2}+n c^{2}-\frac{m n a^{2}}{m+n}$.
Substituting $m+n=a$, we obtain the Stewart's theorem (Coxeter, Greitzer, exercise 4 on p. 6).

If $A A^{\prime}$ is a median, then $\left|B A^{\prime}\right|:\left|A^{\prime} C\right|=1: 1$, i.e. $m=n=1$, and we have, $\overrightarrow{A A^{\prime}}=\frac{1}{2} \overrightarrow{A B}+\frac{1}{2} \overrightarrow{A C},\left|A A^{\prime}\right|^{2}=\frac{1}{2} b^{2}+\frac{1}{2} c^{2}-\frac{1}{4} a^{2}\left(A A^{\prime}\right.$ is a median .

If $A A^{\prime}$ is a bisector, $\left|B A^{\prime}\right|:\left|A^{\prime} C\right|=c: b$, i.e. $m=c, n=b$, and we obtain $\overrightarrow{A A^{\prime}}=\frac{b}{b+c} \overrightarrow{A B}+\frac{c}{b+c} \overrightarrow{A C}$, as well as $\left|A A^{\prime}\right|^{2}=\frac{b^{2} c+c^{2} b}{b+c}-\frac{b c a^{2}}{(b+c)^{2}}=b c\left(1-\frac{a^{2}}{(b+c)^{2}}\right)$ ($A A^{\prime}$ is a bisector).

