## Algebra.

## Trigonometry homework review.

The following trigonometric formulas will be useful for solving the homework.

1. Products of sine and cosine

$$
\begin{aligned}
\cos \alpha \cos \beta & =\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta)) \\
\sin \alpha \sin \beta & =\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)) \\
\sin \alpha \cos \beta & =\frac{1}{2}(\sin (\alpha+\beta)+\sin (\alpha-\beta)) \\
\cos \alpha \sin \beta & =\frac{1}{2}(\sin (\alpha+\beta)-\sin (\alpha-\beta))
\end{aligned}
$$

2. Sums of sine and cosine

$$
\begin{aligned}
& \cos (\alpha)+\cos (\beta)=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& \cos (\alpha)-\cos (\beta)=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
& \sin (\alpha)+\sin (\beta)=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& \sin (\alpha)-\sin (\beta)=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}
\end{aligned}
$$

3. Sine and cosine of double and triple angle

$$
\sin 2 \alpha=2 \sin \alpha \cos \alpha=\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}=\frac{2 \cot \alpha}{1+\cot ^{2} \alpha}
$$

$$
\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\frac{\cot ^{2} \alpha-1}{\cot ^{2} \alpha+1}
$$

$$
\sin 3 \alpha=3 \sin \alpha-4 \sin ^{3} \alpha
$$

$$
\cos 3 \alpha=4 \cos ^{3} \alpha-3 \cos \alpha
$$

## Solutions to selected homework problems:

1. Find the sum of the following series,

$$
S=\cos x+\cos 2 x+\cos 3 x+\cos 4 x+\cdots+\cos N x
$$

(hint: multiply the sum by $2 \sin x / 2$ )
Solution 1: Easy way of summing the trigonometric series is by multiplying and dividing it with $\sin \frac{x}{2}$,

$$
\begin{aligned}
& S \frac{\sin \frac{x}{2}}{\sin \frac{x}{2}}=\frac{\sin \frac{x}{2}(\cos x+\cos 2 x+\cdots+\cos n x)}{\sin \frac{x}{2}}=\frac{\sin \frac{x}{2} \cos x+\sin \frac{x}{2} \cos 2 x+\cdots+\sin \frac{x}{2} \cos n x}{\sin \frac{x}{2}}= \\
& \frac{\frac{1}{2}\left(-\sin \frac{x}{2}+\sin \frac{3 x}{2}-\sin \frac{3 x}{2}+\sin \frac{5 x}{2}-\sin \frac{5 x}{2}+\cdots-\sin \left(n-\frac{1}{2}\right) x+\sin \left(n+\frac{1}{2}\right) x\right)}{\sin \frac{x}{2}}=\frac{\frac{1}{2}\left(-\sin \frac{x}{2}+\sin \left(n+\frac{1}{2}\right) x\right)}{\sin \frac{x}{2}}= \\
& \frac{\cos \frac{(n+1) x}{2} \sin \frac{n x}{2}}{\sin \frac{x}{2}} .
\end{aligned}
$$

Solution 2. A different and perhaps easier way of summing the above trigonometric series is by adding the expression for $S_{1}$, or $S_{2}$, rearranged from back to front, to itself, as we did when summing the arithmetic series,

$$
\begin{gathered}
S_{1}=\cos x+\cos 2 x+\cdots+\cos n x \\
S_{1}=\cos n x+\cos (n-1) x+\cdots+\cos x
\end{gathered}
$$

Wherefrom,
$S_{1}=\frac{1}{2}((\cos x+\cos n x)+(\cos 2 x+\cos (n-1) x)+\cdots+(\cos n x+\cos x))=$ $\cos \frac{(\mathrm{n}+1) \mathrm{x}}{2}\left(\cos (\mathrm{n}-1) \frac{\mathrm{x}}{2}+\cos (\mathrm{n}-3) \frac{\mathrm{x}}{2}+\cdots+\cos (\mathrm{n}-1) \frac{\mathrm{x}}{2}\right)=$ $\cos \frac{(\mathrm{n}+1) \mathrm{x}}{2} \frac{\left(\sin \frac{\mathrm{x}}{2} \cos (\mathrm{n}-1) \frac{\mathrm{x}}{2}+\sin \frac{\mathrm{x}}{2} \cos (\mathrm{n}-3) \frac{\mathrm{x}}{2}+\cdots+\sin \frac{\mathrm{x}}{2} \cos (\mathrm{n}-1) \frac{\mathrm{x}}{2}\right)}{\sin \frac{\mathrm{x}}{2}}=$ $\cos \frac{(\mathrm{n}+1) \mathrm{x}}{2} \frac{\frac{1}{2}\left(\sin \frac{\mathrm{nx}}{2}-\sin \frac{(\mathrm{n}-2) \mathrm{x}}{2}+\sin \frac{(\mathrm{n}-2) \mathrm{x}}{2}-\sin \frac{(\mathrm{n}-4) \mathrm{x}}{2}+\cdots+\sin \frac{\mathrm{nx}}{2}\right)}{\sin \frac{\mathrm{x}}{2}}=\cos \frac{(\mathrm{n}+1) \mathrm{x}}{2} \frac{\sin \frac{\mathrm{nx}}{2}}{\sin \frac{x}{2}}$.

It is interesting to look at a function $S(x)$.


Behavior of $S_{1}(x)$ is intuitively clear. For $x=0$, all terms in the sum are equal to 1 , and the sum equals to the number of terms, $S_{1}(0)=n$, while for $x \neq 0$ it consists of a large number of positive and negative terms, which tend to cancel each other.
2. Prove the following equalities:
a. $\frac{1}{\sin \alpha}+\frac{1}{\tan \alpha}=\cot \frac{\alpha}{2}$

## Solution:

$$
\frac{1}{\sin \alpha}+\frac{1}{\tan \alpha}=\frac{1+\cos \alpha}{\sin \alpha}=\frac{2 \cos ^{2} \frac{\alpha}{2}}{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}=\cot \frac{\alpha}{2}
$$

b. $\sin ^{2}\left(\frac{7 \pi}{8}-2 \alpha\right)-\sin ^{2}\left(\frac{9 \pi}{8}-2 \alpha\right)=\frac{\sin 4 \alpha}{\sqrt{2}}$

Solution:

$$
\begin{aligned}
& \sin ^{2}\left(\frac{7 \pi}{8}-2 \alpha\right)-\sin ^{2}\left(\frac{9 \pi}{8}-2 \alpha\right)=\left(\sin \left(\frac{7 \pi}{8}-2 \alpha\right)-\sin \left(\frac{9 \pi}{8}-2 \alpha\right)\right)\left(\operatorname { s i n } \left(\frac{7 \pi}{8}-\right.\right. \\
& \left.2 \alpha)+\sin \left(\frac{9 \pi}{8}-2 \alpha\right)\right)=2 \cos \frac{2 \pi-4 \alpha}{2} \sin \left(-\frac{\pi}{8}\right) 2 \sin \frac{2 \pi-4 \alpha}{2} \cos \left(-\frac{\pi}{8}\right)= \\
& -2 \sin (\pi-2 \alpha) \cos (\pi-2 \alpha) 2 \sin \left(\frac{\pi}{8}\right) \cos \left(\frac{\pi}{8}\right)=\sin 4 \alpha \sin \frac{\pi}{4}=\frac{\sin 4 \alpha}{\sqrt{2}}
\end{aligned}
$$

$$
\text { c. }(\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}=4 \sin ^{2} \frac{\alpha-\beta}{2}
$$

Solution:

$$
\begin{aligned}
&(\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2} \\
&=4 \sin ^{2} \frac{\alpha+\beta}{2} \sin ^{2} \frac{\alpha-\beta}{2}+4 \cos ^{2} \frac{\alpha+\beta}{2} \sin ^{2} \frac{\alpha-\beta}{2} \\
&=4 \sin ^{2} \frac{\alpha-\beta}{2}\left(\sin ^{2} \frac{\alpha+\beta}{2}+\cos ^{2} \frac{\alpha+\beta}{2}\right)=4 \sin ^{2} \frac{\alpha-\beta}{2}
\end{aligned}
$$

d. $\frac{\cot ^{2} 2 \alpha-1}{2 \cot 2 \alpha}-\cos 8 \alpha \cot 4 \alpha=\sin 8 \alpha$

## Solution:

$\frac{\cot ^{2} 2 \alpha-1}{2 \cot 2 \alpha}-\cos 8 \alpha \cot 4 \alpha=\frac{\cos ^{2} 2 \alpha-\sin ^{2} 2 \alpha}{2 \sin 2 \alpha \cos 2 \alpha}-\cos 8 \alpha \frac{\cos 4 \alpha}{\sin 4 \alpha}=\cot 4 \alpha(1-$ $\cos 8 \alpha)=\frac{\cos 4 \alpha}{\sin 4 \alpha} 2 \sin ^{2} 4 \alpha=2 \sin 4 \alpha \cos 4 \alpha=\sin 8 \alpha$

$$
\text { e. } \sin ^{6} \alpha+\cos ^{6} \alpha+3 \sin ^{2} \alpha \cos ^{2} \alpha=1
$$

## Solution:

$\sin ^{6} \alpha+\cos ^{6} \alpha+3 \sin ^{2} \alpha \cos ^{2} \alpha=\left(\frac{3 \sin \alpha-\sin 3 \alpha}{4}\right)^{2}+\left(\frac{\cos 3 \alpha+3 \cos \alpha}{4}\right)^{2}+$
$\frac{3}{4} \sin ^{2} 2 \alpha=\frac{1}{16}\left(9 \sin ^{2} \alpha+\sin ^{2} 3 \alpha-6 \sin \alpha \sin 3 \alpha+\cos ^{2} 3 \alpha+9 \cos ^{2} \alpha+\right.$ $\left.6 \cos 3 \alpha \cos \alpha+12 \sin ^{2} 2 \alpha\right)=\frac{1}{16}(10+6(\cos 3 \alpha \cos \alpha-\sin 3 \alpha \sin \alpha)+$ $6(1-\cos 4 \alpha))=\frac{1}{16}(10+6 \cos 4 \alpha+6(1-\cos 4 \alpha))=1$

$$
\text { f. } \frac{\sin 6 \alpha+\sin 7 \alpha+\sin 8 \alpha+\sin 9 \alpha}{\cos 6 \alpha+\cos 7 \alpha+\cos 8 \alpha+\cos 9 \alpha}=\tan \frac{15 \alpha}{2}
$$

## Solution:

$$
\begin{aligned}
& \frac{\sin 6 \alpha+\sin 7 \alpha+\sin 8 \alpha+\sin 9 \alpha}{\cos 6 \alpha+\cos 7 \alpha+\cos 8 \alpha+\cos 9 \alpha}=\frac{(\sin 6 \alpha+\sin 9 \alpha)+(\sin 8 \alpha+\sin 7 \alpha)}{(\cos 6 \alpha+\cos 9 \alpha)+(\cos 8 \alpha+\cos 7 \alpha)}= \\
& \frac{2 \sin \frac{15}{2} \alpha \cos \frac{3}{2} \alpha+2 \sin \frac{15}{2} \alpha \cos \frac{1}{2} \alpha}{2 \cos \frac{15}{2} \alpha \cos \frac{3}{2} \alpha+2 \cos \frac{15}{2} \alpha \cos \frac{1}{2} \alpha}=\frac{\sin \frac{15}{2} \alpha}{\cos \frac{15}{2} \alpha} \frac{\cos \frac{3}{2} \alpha+\cos \frac{1}{2} \alpha}{\cos \frac{3}{2} \alpha+\cos \frac{1}{2} \alpha}=\tan \frac{15}{2} \alpha
\end{aligned}
$$

g. $\sin ^{6} \alpha+\cos ^{6} \alpha=\frac{5+3 \cos 4 \alpha}{8}$

## Solution:

$\sin ^{6} \alpha+\cos ^{6} \alpha=\left(\frac{3 \sin \alpha-\sin 3 \alpha}{4}\right)^{2}+\left(\frac{\cos 3 \alpha+3 \cos \alpha}{4}\right)^{2}=\frac{1}{16}\left(9 \sin ^{2} \alpha+\sin ^{2} 3 \alpha-\right.$ $\left.6 \sin \alpha \sin 3 \alpha+\cos ^{2} 3 \alpha+9 \cos ^{2} \alpha+6 \cos 3 \alpha \cos \alpha\right)=$
$\frac{1}{16}(10+6(\cos 3 \alpha \cos \alpha-\sin 3 \alpha \sin \alpha))=\frac{1}{16}(10+6 \cos 4 \alpha)=\frac{5+3 \cos 4 \alpha}{8}$
h. $16 \sin ^{5} \alpha-20 \sin ^{3} \alpha+5 \sin \alpha=\sin 5 \alpha$

## Solution:

$$
\sin 5 \alpha=\sin \alpha \cos 4 \alpha+\cos \alpha \sin 4 \alpha=\sin \alpha\left(2 \cos ^{2} 2 \alpha-1\right)+
$$

$$
\cos \alpha 2 \sin 2 \alpha \cos 2 \alpha=\sin \alpha\left(2\left(1-2 \sin ^{2} \alpha\right)^{2}-1\right)+4 \sin \alpha \cos ^{2} \alpha(1-
$$

$$
\left.2 \sin ^{2} \alpha\right)=\sin \alpha\left(1-8 \sin ^{2} \alpha+8 \sin ^{4} \alpha+4\left(1-\sin ^{2} \alpha\right)(1-\right.
$$

$$
\left.\left.2 \sin ^{2} \alpha\right)\right)=\sin \alpha\left(5-20 \sin ^{2} \alpha+16 \sin ^{4} \alpha\right)
$$

$$
\text { i. } \frac{\cos 64^{\circ} \cos 4^{\circ}-\cos 86^{\circ} \cos 26^{\circ}}{\cos 71^{\circ} \cos 41^{\circ}-\cos 49^{\circ} \cos 19^{\circ}}
$$

## Solution:

$$
\frac{\cos 64^{\circ} \cos 4^{\circ}-\cos 86^{\circ} \cos 26^{\circ}}{\cos 71^{\circ} \cos 41^{\circ}-\cos 49^{\circ} \cos 19^{\circ}}=\frac{\cos 60^{\circ}+\cos 68^{\circ}-\cos 60^{\circ}-\cos 112^{\circ}}{\cos 30^{\circ}+\cos 112^{\circ}-\cos 30^{\circ}-\cos 68^{\circ}}=\frac{\cos 68^{\circ}-\cos 112^{\circ}}{\cos 112^{\circ}-\cos 68^{\circ}}=-1
$$

$$
\text { j. } \sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}
$$

Solution: denote $x=20^{\circ}, \cos 3 x=\cos 60^{\circ}=\frac{1}{2}, \cos 6 x=\cos 120^{\circ}=-\frac{1}{2^{\prime}}$

$$
\sin x \sin 2 x \sin 3 x \sin 4 x=\sin x \sin 3 x \sin 2 x \sin 4 x=\frac{1}{2}(\cos 2 x-
$$

$$
\cos 4 x) \frac{1}{2}(\cos 2 x-\cos 6 x)=\frac{1}{2}\left(\cos 2 x-\left(2 \cos ^{2} 2 x-1\right)\right)(\cos 2 x+
$$

$$
\left.\frac{1}{2}\right)=\frac{1}{2}\left(\cos ^{2} 2 x-2 \cos ^{3} 2 x+\cos 2 x+\frac{1}{2} \cos 2 x-\cos ^{2} 2 x+\frac{1}{2}\right)=
$$

$$
\frac{1}{4}\left(1-4 \cos ^{3} 2 x+3 \cos 2 x\right)=\frac{1}{4}(1-\cos 6 x)=\frac{3}{16}
$$

k. $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=4$

Solution:

$$
\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=4 \frac{\frac{1}{2} \cos 10^{\circ}-\frac{\sqrt{3}}{2} \sin 10^{\circ}}{2 \sin 10^{\circ} \cos 10^{\circ}}=4 \frac{\frac{1}{2} \cos 10^{\circ}-\frac{\sqrt{3}}{2} \sin 10^{\circ}}{2 \sin 10^{\circ} \cos 10^{\circ}}=4 \frac{\sin \left(30^{\circ}-10^{\circ}\right)}{\sin 20^{\circ}}=4
$$

## Trigonometry homework review. Part 2.

3. Simplify the following expressions:
4. $\sin ^{2}\left(\frac{\alpha}{2}+2 \beta\right)-\sin ^{2}\left(\frac{\alpha}{2}-2 \beta\right)$

Solution:
$\sin ^{2}\left(\frac{\alpha}{2}+2 \beta\right)-\sin ^{2}\left(\frac{\alpha}{2}-2 \beta\right)=\left(\sin \left(\frac{\alpha}{2}+2 \beta\right)-\sin \left(\frac{\alpha}{2}-2 \beta\right)\right)\left(\sin \left(\frac{\alpha}{2}+\right.\right.$
$\left.2 \beta)+\sin \left(\frac{\alpha}{2}-2 \beta\right)\right)=2 \cos \frac{\alpha}{2} \sin 2 \beta 2 \sin \frac{\alpha}{2} \cos 2 \beta=\sin \alpha \sin 4 \beta$.
m. $2 \cos ^{2} 3 \alpha+\sqrt{3} \sin 6 \alpha-1$

Solution:

$$
\begin{aligned}
2 \cos ^{2} 3 \alpha+ & \sqrt{3} \sin 6 \alpha-1=\cos 6 \alpha+1+\sqrt{3} \sin 6 \alpha-1 \\
& =2\left(\frac{1}{2} \cos 6 \alpha+\frac{\sqrt{3}}{2} \sin 6 \alpha\right)=2\left(\sin \frac{\pi}{6} \cos 6 \alpha+\cos \frac{\pi}{6} \sin 6 \alpha\right) \\
& =2 \sin \left(\frac{\pi}{6}+6 \alpha\right)
\end{aligned}
$$

n. $\cos ^{4} 2 \alpha-6 \cos ^{2} 2 \alpha \sin ^{2} 2 \alpha+\sin ^{4} 2 \alpha$

Solution:
$\cos ^{4} 2 \alpha-6 \cos ^{2} 2 \alpha \sin ^{2} 2 \alpha+\sin ^{4} 2 \alpha=\left(\cos ^{2} 2 \alpha-\sin ^{2} 2 \alpha\right)^{2}-$ $4 \cos ^{2} 2 \alpha \sin ^{2} 2 \alpha=\cos ^{2} 4 \alpha-\sin ^{2} 4 \alpha=\cos 8 \alpha$

$$
\text { o. } \sin ^{2}\left(135^{\circ}-2 \alpha\right)-\sin ^{2}\left(210^{\circ}-2 \alpha\right)-\sin 195^{\circ} \cos \left(165^{\circ}-4 \alpha\right) .
$$

Solution:
$\sin ^{2}\left(135^{\circ}-2 \alpha\right)-\sin ^{2}\left(210^{\circ}-2 \alpha\right)-\sin 15^{\circ} \cos \left(165^{\circ}-4 \alpha\right)=$ $\sin ^{2}\left(45^{\circ}+2 \alpha\right)-\sin ^{2}\left(2 \alpha-30^{\circ}\right)-\sin 15^{\circ} \cos \left(15^{\circ}+4 \alpha\right)=\left(\sin \left(45^{\circ}+\right.\right.$ $\left.2 \alpha)-\sin \left(2 \alpha-30^{\circ}\right)\right)\left(\sin \left(45^{\circ}+2 \alpha\right)+\sin \left(2 \alpha-30^{\circ}\right)\right)-\sin 15^{\circ} \cos \left(15^{\circ}+\right.$ $4 \alpha)=2 \cos \frac{15^{\circ}+4 \alpha}{2} \sin \frac{75^{\circ}}{2} 2 \sin \frac{15^{\circ}+4 \alpha}{2} \cos \frac{75^{\circ}}{2}-\sin 15^{\circ} \cos \left(15^{\circ}+4 \alpha\right)=$ $\sin 75^{\circ} \sin \left(15^{\circ}+4 \alpha\right)-\sin 15^{\circ} \cos \left(15^{\circ}+4 \alpha\right)=\sin \left(15^{\circ}+4 \alpha\right) \cos 15^{\circ}-$ $\cos \left(15^{\circ}+4 \alpha\right) \sin 15^{\circ}=\sin (4 \alpha)$
p. $\frac{\cos 2 \alpha-\cos 6 \alpha+\cos 10 \alpha-\cos 14 \alpha}{\sin 2 \alpha+\sin 6 \alpha+\sin 10 \alpha+\sin 14 \alpha}$

Solution:

$$
\begin{gathered}
\frac{\cos 2 \alpha-\cos 6 \alpha+\cos 10 \alpha-\cos 14 \alpha}{\sin 2 \alpha+\sin 6 \alpha+\sin 10 \alpha+\sin 14 \alpha}=\frac{2 \sin 8 \alpha \sin 6 \alpha-2 \sin 8 \alpha \sin 2 \alpha}{2 \sin 8 \alpha \cos 2 \alpha+2 \sin 8 \alpha \cos 6 \alpha} \\
=\frac{\sin 6 \alpha-\sin 2 \alpha}{\cos 2 \alpha+\cos 6 \alpha}=\frac{2 \cos 4 \alpha \sin 2 \alpha}{2 \cos 4 \alpha \cos 2 \alpha}=\tan 2 \alpha
\end{gathered}
$$

4. Let $A, B$ and $C$ be angles of a triangle. Prove that

$$
\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1
$$

Solution:

$$
\begin{aligned}
& \tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \left(\frac{\pi}{2}-\frac{A+B}{2}\right)+ \\
& \tan \left(\frac{\pi}{2}-\frac{A+B}{2}\right) \tan \frac{A}{2}=\tan \frac{A}{2} \tan \frac{B}{2}+\cot \frac{A+B}{2}\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right)=\tan \frac{A}{2} \tan \frac{B}{2}+ \\
& \cot \frac{A+B}{2} \frac{\sin \frac{A}{2} \cos \frac{B}{2}+\sin \frac{B}{2} \cos \frac{A}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}=\frac{\sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}+\cot \frac{A+B}{2} \frac{\sin \frac{A+B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}=\frac{\sin \frac{A}{2} \sin \frac{B}{2}+\cos \frac{A+B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}=1
\end{aligned}
$$

