Homework for April 1, 2018.

Algebra/Trigonometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on trigonometric functions. Additional reading on trigonometric functions is Read Gelfand \& Saul, Trigonometry, Chapter 2 (pp. 42-54) and Chapters 6-8 (pp. 123-163), http://en.wikipedia.org/wiki/Trigonometric functions http://en.wikipedia.org/wiki/Sine. Solve the following problems.

Problems.

1. Find the sum of the following series,

$$
S=\cos x+\cos 2 x+\cos 3 x+\cos 4 x+\cdots+\cos N x
$$

(hint: multiply the sum by $2 \sin x / 2$)
2. Find all x for which,
a. $\sin x \cos x=\frac{1}{2}$
b. $\sin x \cos x=\frac{\sqrt{3}}{2}$
3. Simplify the following expression:
a. $(1+\sin \alpha)(1-\sin \alpha)$
b. $(1+\cos \alpha)(1-\cos \alpha)$
c. $\sin ^{4} \alpha-\cos ^{4} \alpha$
d. $\cos ^{2}\left(\alpha-\frac{\pi}{6}\right)+\cos ^{2}\left(\alpha+\frac{\pi}{6}\right)+\sin ^{2} \alpha=$
4. Calculate:
a. $\cos 75^{\circ}+\cos 15^{\circ}=$
b. $\cos \frac{\pi}{12}-\cos \frac{5 \pi}{12}=$
5. Solve the following equation:
a. $\cos ^{2} \pi x+4 \sin \pi x+4=0$
6. Prove the following equalities:
a. $\frac{1}{\sin \alpha}+\frac{1}{\tan \alpha}=\cot \frac{\alpha}{2}$
b. $\sin ^{2}\left(\frac{7 \pi}{8}-2 \alpha\right)-\sin ^{2}\left(\frac{9 \pi}{8}-2 \alpha\right)=\frac{\sin 4 \alpha}{\sqrt{2}}$
c. $(\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}=4 \sin ^{2} \frac{\alpha-\beta}{2}$
d. $\frac{\cot ^{2} 2 \alpha-1}{2 \cot 2 \alpha}-\cos 8 \alpha \cot 4 \alpha=\sin 8 \alpha$
e. $\sin ^{6} \alpha+\cos ^{6} \alpha+3 \sin ^{2} \alpha \cos ^{2} \alpha=1$
f. $\frac{\sin 6 \alpha+\sin 7 \alpha+\sin 8 \alpha+\sin 9 \alpha}{\cos 6 \alpha+\cos 7 \alpha+\cos 8 \alpha+\cos 9 \alpha}=\tan \frac{15 \alpha}{2}$
g. $\sin ^{6} \alpha+\cos ^{6} \alpha=\frac{5+3 \cos 4 \alpha}{8}$
h. $16 \sin ^{5} \alpha-20 \sin ^{3} \alpha+5 \sin \alpha=\sin 5 \alpha$
i. $\frac{\cos 64^{\circ} \cos 4^{\circ}-\cos 86^{\circ} \cos 26^{\circ}}{\cos 71^{\circ} \cos 41^{\circ}-\cos 49^{\circ} \cos 19^{\circ}}$
j. $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$
k. $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=4$
7. Simplify the following expressions:
a. $\sin ^{2}\left(\frac{\alpha}{2}+2 \beta\right)-\sin ^{2}\left(\frac{\alpha}{2}-2 \beta\right)$
b. $2 \cos ^{2} 3 \alpha+\sqrt{3} \sin 6 \alpha-1$
c. $\cos ^{4} 2 \alpha-6 \cos ^{2} 2 \alpha \sin ^{2} 2 \alpha+\sin ^{4} 2 \alpha$
d. $\sin ^{2}\left(135^{\circ}-2 \alpha\right)-\sin ^{2}\left(210^{\circ}-2 \alpha\right)-\sin ^{2} 195^{\circ} \cos \left(165^{\circ}-4 \alpha\right)$
e. $\frac{\cos 2 \alpha-\cos 6 \alpha+\cos 10 \alpha-\cos 14 \alpha}{\sin 2 \alpha+\sin 6 \alpha+\sin 10 \alpha+\sin 14 \alpha}$
8. Find the period of the function $y=\sin 5 x-2 \sin 7 x$
9. Let A, B and C be angles of a triangle. Prove that

$$
\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1
$$

10. Solve the following equations and inequalities:
f. $\sin x+\sin 2 x+\sin 3 x=\cos x+\cos 2 x+\cos 3 x$
g. $\cos 3 x-\sin x=\sqrt{3}(\cos x-\sin 3 x)$
h. $\sin ^{2} x-2 \sin x \cos x=3 \cos ^{2} x$
i. $\sin 6 x+2=2 \cos 4 x$
j. $\cot x-\tan x=\sin x+\cos x$
k. $\sin x \geq \pi / 2$
l. $\sin x \leq \cos x$

Geometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on vectors. Solve the following problems.

Problems.

1. In a triangle $A B C$, vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{B C}$ (c, b and a) are the sides. $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ are the medians.
a. Express vectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ through vectors \mathbf{c}, \mathbf{b} and \mathbf{a}.
b. Find the sum of vectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$.
2. Solve the same problem for bisectors $\overrightarrow{A N}$, $\overrightarrow{C M}$ and $\overrightarrow{B P}$ in a triangle $A B C$.

3. Coxeter, Greitzer, problem \#9 to Sec. 2.1
(p. 31): How far away is the horizon as seen from the top of a mountain 1 mile high? (Assume the Earth to be a sphere of diameter 7920 miles.)
4. In a rectangle $A B C D, A_{1}, B_{1}, C_{1}$ and D_{1} are the mid-points of sides $A B$, $C D, B C$ and $D A$, respectively. M is the crossing point of the segments $A_{1} B_{1}$, and $C_{1} D_{1}$, connecting two pairs of midpoints.
a. Express vector $\overrightarrow{A_{1} M}$ through $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C D}$.
b. Prove that M is the mid-point of segments, $A_{1} B_{1}$ and $C_{1} D_{1}$, i.e.

$$
\left|A_{1} M\right|=\left|M B_{1}\right| \text { and }\left|C_{1} M\right|=\left|M D_{1}\right| .
$$

5. In a parallelogram $A B C D$, find $\overrightarrow{A B}+\overrightarrow{B D}-2 \overrightarrow{A D}$.
6. M is a crossing point of the medians in a triangle $A B C$. Prove that $\overrightarrow{A M}=\frac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})$.
7. For three points, $A(-1,3), B(2,-5)$ and $C(3,4)$, find the (coordinates of) following vectors,
a. $\overrightarrow{A B}-\overrightarrow{B C}$
b. $\overrightarrow{A B}+\overrightarrow{C B}+\overrightarrow{A C}$
c. $\overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}+\frac{1}{3} \overrightarrow{C A}$
8. For two triangles, $A B C$ and $A_{1} B_{1} C_{1}, \overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}=0$. Prove that medians of these two triangles cross at the same point M.
