Algebra.

Trigonometric formulas and equations.

Using the formulas for the sine and cosine of the sum/difference of two angles, which we have previously derived,

$$
\begin{aligned}
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta
\end{aligned}
$$

It is easy to obtain all other trigonometric formulae.
Exercise. Derive the following expressions for the products of sine and cosine,

$$
\begin{aligned}
& \sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
& \cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)] \\
& \sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha-\beta)+\sin (\alpha+\beta)]
\end{aligned}
$$

Solution. These expressions are obtained by adding and subtracting the above expressions for $\sin (\alpha \pm \beta), \cos (\alpha \pm \beta)$. For example,
$\sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \cos \beta$, etc.
Exercise. Derive the following expressions for sums and differences of sine and cosine,

$$
\begin{aligned}
& \sin \alpha+\sin \beta=2 \sin \left[\frac{1}{2}(\alpha+\beta)\right] \cos \left[\frac{1}{2}(\alpha-\beta)\right] \\
& \sin \alpha-\sin \beta=2 \cos \left[\frac{1}{2}(\alpha+\beta)\right] \sin \left[\frac{1}{2}(\alpha-\beta)\right] \\
& \cos \alpha+\cos \beta=2 \cos \left[\frac{1}{2}(\alpha+\beta)\right] \cos \left[\frac{1}{2}(\alpha-\beta)\right]
\end{aligned}
$$

$$
\cos \alpha-\cos \beta=-2 \sin \left[\frac{1}{2}(\alpha+\beta)\right] \sin \left[\frac{1}{2}(\alpha-\beta)\right]
$$

Solution. The above expressions are obtained by representing α and β as, $\alpha=\frac{1}{2}(\alpha+\beta)+\frac{1}{2}(\alpha-\beta), \alpha=\frac{1}{2}(\alpha+\beta)-\frac{1}{2}(\alpha-\beta)$, and using the previously obtained expressions for $\sin (\alpha \pm \beta), \cos (\alpha \pm \beta)$.

Exercise. Derive the following expressions,

$$
\begin{gathered}
\tan \alpha \pm \tan \beta=\frac{\sin (\alpha \pm \beta)}{\cos (\alpha) \cos (\beta)} \quad \cot \alpha \pm \cot \beta= \pm \frac{\sin (\alpha \pm \beta)}{\sin (\alpha) \sin (\beta)} \\
\sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha) \\
\sin 3 \alpha=3 \cos 2 \alpha=\frac{1}{2}(1+\cos 2 \alpha) \\
\sin ^{3} \alpha=\frac{1}{4}(3 \sin \alpha-\sin 3 \alpha) \\
\cos ^{3} \alpha=\frac{1}{4}(3 \cos \alpha+\cos 3 \alpha) \\
\sin \frac{\alpha}{2}=\sqrt{\frac{1}{2}(1-\cos \alpha)} \quad \cos 3 \alpha=4 \cos ^{3} \alpha-3 \cos \alpha \\
\tan \frac{\alpha}{2}=\sqrt{\frac{1}{2}(1+\cos \alpha} \frac{1+\cos \alpha)}{2}=\frac{1-\cos \alpha}{\sin \alpha}=\frac{\sin \alpha}{1+\cos \alpha} \\
\cot \frac{\alpha}{2}=\sqrt{\frac{1+\cos \alpha}{1-\sin \alpha}}=\frac{1+\cos \alpha}{\sin \alpha}=\frac{\sin \alpha}{1-\cos \alpha} \\
\sin 2 \alpha=\frac{2 \tan ^{2} \alpha}{1+\tan ^{2} \alpha} \\
\cos 2 \alpha=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha} \\
\tan 2 \alpha=\frac{2 \tan ^{2} \alpha}{1-\tan ^{2} \alpha}
\end{gathered}
$$

Trigonometric functions and relations.

Exercise. Fill in the table of the trigonometric functions of complementary angles below.

α	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$
$\frac{\pi}{2}-\alpha$	$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha$			
$\frac{\pi}{2}+\alpha$				
$\pi-\alpha$				
$\pi+\alpha$				
$\frac{3}{2} \pi-\alpha$				
$\frac{3}{2} \pi+\alpha$				
$-\alpha$				

