Homework for January 28, 2018.

Algebra.

Review the classwork handout. Review and solve the classwork exercises which were not solved (some are repeated below). Solve the following problems.

- 1. Prove the following properties of the Cartesian product,
 - a. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - b. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - c. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
- 2. Find the Cartesian product, $A \times B$, of the following sets,
 - a. $A = \{a, b\}, B = \{\uparrow, \downarrow\}$
 - b. $A = \{June, July, August\}, B = \{1, 15\}$
 - c. $A = \emptyset, B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- 3. Describe the set of points determined by the Cartesian product, $A \times B$, of the following sets (illustrate schematically on a graph),
 - a. A = [0,1], B = [0,1] (two segments from 0 to 1)
 - b. $A = [-1,1], B = (-\infty, \infty)$
 - c. $A = (-\infty, 0], B = [0, \infty)$
 - d. $A = (-\infty, \infty), B = (-\infty, \infty)$
 - e. $A = [0,1), B = \mathbb{Z}$ (set of all integers)
- 4. Propose 3 meaningful examples of a Cartesian product of two sets.
- 5. $n_A = |A|$ is the number of elements in a set *A*.
 - a. What is the number of elements in a set $A \times A$
 - b. What is the number of elements in a set $A \times (A \times A)$
- 6. Present examples of binary relations that are, and that are not equivalence relations.
- 7. For each of the following relations, check whether it is an equivalence relation and describe all equivalence classes.
 - a. On \mathbb{R} : relation given by $x \sim y$ if |x| = |y|
 - b. On \mathbb{Z} : relation given by $a \sim b$ if $a \equiv b \mod 5$
 - c. On $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, $(x_1, x_2) \sim (y_1, y_2)$ if $x_1 + x_2 = y_1 + y_2$; describe the equivalence class of (1, 2)
 - d. Let ~ be the relation on the set of all directed segments in the plane defined by $\overrightarrow{AB} \sim \overrightarrow{A'B'}$ if ABB'A' is a parallelogram.

- e. On the set of pairs of integers, $\{(a, b), a, b \in \mathbb{Z}, b \neq 0\}$, $(a_1, b_1) \sim (a_2, b_2)$ if $a_1 b_2 = a_2 b_1$. Describe these equivalence classes. Is the set of the obtained equivalence classes countable?
- 8. Let $f: X \xrightarrow{f} Y$ be a function. Define a relation on X by $x_1 \sim x_2$ if $f(x_1) = f(x_2)$. Prove that it is an equivalence relation. Describe the equivalence classes for the equivalences defined by the following functions on \mathbb{R} .
 - a. $f(x) = x^2$: $x \sim y$ if $x^2 = y^2$.
 - b. $f(x) = \sin x$: $x \sim y$ if $\sin x = \sin y$.

Geometry.

Review the previous classwork notes. Solve the following problems from the last homework (if you have not solved them yet).

Problems.

- 1. Review derivation of the equation describing an ellipse. In a similar way, try deriving,
 - a. Equation of an ellipse, defined as the locus of points P for which the distance to a given point (focus F₂) is a constant fraction of the perpendicular distance to a given line, called the directrix, $|PF_2|/|PD| = e < 1.$
 - b. Equation of a hyperbola, defined as the locus of points for which the ratio of the distances to one focus and to a line (called the directrix) is a constant e. However, for a hyperbola it is larger than 1, $|PF_2|/|PD| = e > 1.$
- 2. Given two lines, *l* and *l'*, and a point *F* not on any of those lines, find point *P* on *l* such that the (signed) difference of distances from it to *l'* and *F*, |P'L'| |P'F|, is maximal. As seen in the figure, for any *P'* on *l* the distance to *l'*, $|P'L'| \le |P'L| \le |P'F| + |FL|$, where |FL| is the distance from *F* to *l'*. Hence, $|P'L'| |P'F| \le |FL|$, and the difference is largest (= |FL|) when point *P* belongs to the perpendicular *FL* from point *F* to *l'*.
- **3.** Given line *l* and points F_1 and F_2 lying on different sides of it, find point *P* on the line *l* such that the absolute value of the difference in distances from *P* to points F_1 and F_2 is maximal. As above, let F_2' be the reflection of F_2 in *l*. Then for any point *X* on $l, |XF_2| |XF_1'| \le |F_1F_2'|$

