Algebra.

Cartesian product.

Given two sets, A and B, we can construct a third set, C, which is made of all possible ordered pairs of the elements of these sets, (a, b), where $a \in A$ and $b \in B$. We thus have a binary operation, which acts on a pair of objects (sets A and B) and returns a third object (set C). Following Rene Descartes, who first considered such construction in the context of Cartesian coordinates of points on a plane, in mathematics such operation is called Cartesian product.

A Cartesian product is a mathematical operation that returns a (product) set from multiple sets. For two sets A and B, the Cartesian product $A \times B$ is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$,

$$
A \times B=\{(a, b): a \in A \wedge b \in B\}
$$

Example 1. A table can be created from a single row and a single column, by taking the Cartesian product of a set of objects in a row and a set of objects in a column. In the Cartesian product row \times column, the cells of the table contain ordered pairs of the form (row object, column object).

Example 2. Another example is a 52 (or 36) card deck. In a 52 card deck, the standard playing card ranks $\{\mathrm{A}, \mathrm{K}, \mathrm{Q}, \mathrm{J}, 10,9,8,7,6,5,4,3,2\}$ form a $13-$ element set. The card suits $\{\boldsymbol{\wedge}, \boldsymbol{\vee}, \boldsymbol{\downarrow}\}$ form a four-element set. The Cartesian product of these two sets returns a 52 -element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards. Ranks \times Suits returns

 $(\boldsymbol{\leftrightarrow}, 10), \ldots,(\boldsymbol{e}, 6),(\boldsymbol{e}, 5),(\boldsymbol{e}, 4),(\boldsymbol{e}, 3),(\boldsymbol{\mu}, 2)\}$. Are these two sets different?

The Cartesian product $\mathrm{A} \times \mathrm{B}$ is not commutative, because the elements in the ordered pairs are reversed.

$$
\{(a, b): a \in A \wedge b \in B\}=A \times B \neq B \times A=\{(b, a): a \in A \wedge b \in B\}
$$

Exercise 1. Construct Cartesian product for sets:

- $A=\{13,14\} ; B=\{1,1\}$
- $A=\{3,5,7\} ; B=\{7,5,3\}$
- $A=\{a, b, c, d, e, f, g, h\} ; B=\{1,2,3,4,5,6,7,8\}$
- $A=\{J, F, M, A, M, J, J, A, S, O, N, D\} ; B=\{n: n \in \mathbb{N} \wedge n \leq 31\}$

Exercise 2. Check non-commutativity for Cartesian product of sets in Exercise 1 (construct $B \times A$).

Exercise 3. For which particular cases is the Cartesian product commutative?
The Cartesian product is not associative,

$$
(A \times B) \times C \neq A \times(B \times C)
$$

For example, if $A=\{1\}$, then,
$(A \times A) \times A=\{((1,1), 1)\} \neq\{(1,(1,1))\}=A \times(A \times A)$
Exercise 4. For which particular cases is the Cartesian product associative?
The Cartesian product has following property with respect to intersections,

$$
(A \cap B) \times(C \cap D)=(A \times C) \cap(B \times D)
$$

The above statement is not true if we replace intersection with union,

$$
(A \cup B) \times(C \cup D) \neq(A \times C) \cup(B \times D)
$$

Exercise 5. Prove the following distributivity properties of Cartesian products,

- $A \times(B \cap C)=(A \times B) \cap(A \times C)$
- $A \times(B \cup C)=(A \times B) \cup(A \times C)$
- $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$

Equivalence relations and partitions.

Definition. A binary relation on a set A,

$$
x \sim y, \quad x, y \in A
$$

is a collection of ordered pairs of elements of $A,\{(x, y)\}, x, y \in A$. In other words, it is a subset of the Cartesian product $A^{2}=A \times A$.

More generally, a binary relation between two sets A and B is a subset of $A \times B$. The terms correspondence, dyadic relation and 2-place relation are synonyms for binary relation.

Example 1. A binary relation > ("is greater than") between real numbers $x, y \in \mathbb{R}$ associates to every real number all real numbers that are to the left of it on the number axis.

Example 2. A binary relation "is the divisor of " between the set of prime numbers P and the set of integers \mathbb{Z} associates every prime p with every integer n that is a multiple of p, but not with integers that are not multiples of p. In this relation, the prime 3 is associated with numbers that include $-6,0$, 6,9 , but not 2 or -8 ; and the prime 5 is associated with numbers that include 0,10 , and 125 , but not 6 or 11 .

Injections, surjections, bijections between the sets are established by defining the corresponding (injective, surjective, or one-to-one) binary relations between the elements of these sets. A relation $x \sim y$ is,

- left-total: $\forall x \in X, \exists y \in Y, x \sim y$, a relation is left-total when it is a function, or a multivalued function;
- surjective (right-total, or onto): $\forall y \in Y, \exists x \in X, x \sim y$;
- injective (left-unique): $\forall\left(x_{1}, x_{2}, \in X, y \in Y\right),\left(\left(x_{1} \sim y\right) \wedge\left(x_{2} \sim y\right) \Rightarrow\left(x_{1}=x_{2}\right)\right)$
- functional (right-unique, also called univalent, or right-definite):
$\forall\left(x \in X, y_{1}, y_{2}, \in Y\right),\left(\left(x \sim y_{1}\right) \wedge\left(x \sim y_{2}\right) \Rightarrow\left(y_{1}=y_{2}\right)\right)$, such a binary relation is also called a partial function;
- one-to-one: injective and functional.

A binary relation $x \sim y$ is

- reflexive if $\forall x \in A$, we have $x \sim x$
- symmetric if $\forall x, y \in A$, we have $(x \sim y) \Rightarrow(y \sim x)$
- transitive if $\forall x, y, z \in A$, we have $(x \sim y) \wedge(y \sim z) \Rightarrow(x \sim z)$

Definition. An equivalence relation is a binary relation that is reflexive, symmetric, and transitive.

Given an equivalence relation on A, we can define, for every $a \in A$, its equivalence class $[a]$ as the following subset of A :

$$
[a]=\{x \in A,(x \sim a)\}
$$

A partition of a set A is decomposition of it into non-intersecting subsets:

$$
A=A_{1} \cup A_{2} \ldots \cup A_{n} \ldots
$$

with $A_{i} \cap A_{j}=\emptyset$. It is allowed to have infinitely many subsets A_{i}.
Theorem. If \sim is an equivalence relation on a set A, then it defines a partition of A into equivalence classes.

Example. Define the equivalence relation on \mathbb{Z} by congruence $\bmod 3$: $a \equiv b \bmod 3$ if $a-b$ is a multiple of 3 . This defines a partition, $[0]=\{\ldots$ $,-6,-3,0,3,6, \ldots\},[1]=\{\ldots,-2,1,4,7, \ldots\},[2]=\{\ldots,-1,2,5,8, \ldots\}$.

Exercise 1. Present examples of binary relations that are, and that are not

 equivalence relations. For each of the following relations, check whether it is an equivalence relation.- On the set of all lines in the plane: relation of being parallel
- On the set of all lines in the plane: relation of being perpendicular
- On \mathbb{R} : relation given by $x \sim y$ if $x+y \in \mathbb{Z}$
- On \mathbb{R} : relation given by $x \sim y$ if $x-y \in \mathbb{Z}$
- On \mathbb{R} : relation given by $x \sim y$ if $x>y$
- On $\mathbb{R}-\{0\}$: relation given by $x \sim y$ if $x y>0$

Exercise 2. Let \sim be an equivalence relation on A.

- Prove that if $a \sim b$, then $[a]=[b]: \forall x \in A, x \in[a] \Rightarrow x \in[b]$
- Prove that if $a \times b$, then $[a] \cap[b]=\emptyset$.

Exercise 3. Let $f: A \xrightarrow{f} B$ be a function. Define a relation on A by $a \sim b$ if $f(a)=f(b)$. Prove that it is an equivalence relation.

Exercise 4. For a positive integer number $n \in \mathbb{N}$, define relation \equiv on \mathbb{Z} by a $\equiv b$ if $a-b$ is a multiple of n

- Prove that it is an equivalence relation;
- Describe equivalence class [0];
- Prove that equivalence class of $[a+b]$ only depends on equivalence classes of a, b, that is, if $[a]=\left[a^{\prime}\right],[b]=\left[b^{\prime}\right]$, then $[a+b]=\left[a^{\prime}+b^{\prime}\right]$.

Exercise 5. Define a relation \sim on $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ by $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if $x_{1}+x_{2}=y_{1}+y_{2}$. Prove that it is an equivalence relation and describe the equivalence class of $(1,2)$.

