Algebra.

Maps. Functions. Injections, surjections, bijections.

A map is a rule that associates unique objects to elements in a given set. A function is a map that uniquely associates to every element of one set some element of another set: $\forall a \in A, a \xrightarrow{f} f(a)=b \in B$. A partial function on set A maps a subset of elements from set A on elements from set B.

Definition. A function is a relation that uniquely associates every member a in set A with some member b in set B, i.e. a function f is a map $A \xrightarrow{f} B$ such that $\forall a \in A, \exists b \in B, b=f(a)$.

Note that we do not require that every element $b \in B$ appears as a value of a function. A function therefore can be one-to-one or many-to-one relation.

Definition. The set A of values at which a function f is defined is called its domain, while the set $f(A)$ of values that the function can produce, which is a subset of $B, f(A) \subseteq B$, is called its range. The set B is called the codomain of f.

Definition. For a subset X of the domain A of function $f, X \subseteq A$, the image, $f(X)$, is the set of values $y \in B, y=f(x), \forall x \in X$,

$$
Y=f(X)=\{y:(y \in B) \wedge(\exists x \in X, y=f(x))\}
$$

Definition. For a subset Y of the range B, of function $f, Y \subseteq B$, the pre-image, $f^{-1}(Y)$, is the set of values $x \in A, y=f(x), y \in Y$,

$$
X=f^{-1}(Y)=\{x:(x \in A) \wedge(\exists y \in Y, f(x)=y)\}
$$

In particular, if an image $Y=\{y\}$ is a single point $y \in B$, in this case, $f^{-1}(\{y\})$ is the set of all solutions of the equation, $f(x)=y$.

Exercise 1. Let function $f \operatorname{map} A \xrightarrow{f} B$. Prove that for any two subsets of its domain, $X_{1} \subset A, X_{2} \subset A, f\left(X_{1} \cup X_{2}\right)=f\left(X_{1}\right) \cup f\left(X_{2}\right)$.

Show that it could happen that $f\left(X_{1} \cap X_{2}\right) \neq f\left(X_{1}\right) \cap f\left(X_{2}\right)$ (hint: take X_{1}, X_{2} so that they do not intersect).

Exercise 2. Let function $f \operatorname{map} A \xrightarrow{f} B$. Prove that for any two subsets of its codomain, $Y_{1} \subset B, Y_{2} \subset B, f^{-1}\left(Y_{1} \cap Y_{2}\right)=f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$.

Definition. The function $A \xrightarrow{f} B$ is injective (one-to-one) if every element of the co-domain B is mapped to by at most one element of the domain A (has no more than one preimage),
$\forall\left(x_{1}, x_{2}\right) \in A,\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \Rightarrow\left(x_{1}=x_{2}\right)$, or,
$\forall\left(x_{1}, x_{2}\right) \in A,\left(x_{1} \neq x_{2}\right) \Rightarrow\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)$

An injective function is an injection.
Definition. The function $A \xrightarrow{f} B$ is surjective (onto) if every element of the co-domain B is mapped to by at least one element of the domain A (has pre-image in A),

$$
\forall y \in B, \exists x \in A, y=f(x) .
$$

That is, the image of the range of the surjective function coincides with the co-domain. A surjective function is a surjection.

An injective function need not be surjective (not all elements of the co-domain may have pre-images), and a surjective function need not be injective (some images may be associated with more than one pre-image).

Definition. The function $A \xrightarrow{f} B$ is bijective (one-to-one correspondence, or one-to-one and onto) if every element of the co-domain is mapped to by exactly one element of the domain. That is, the function is both injective and
 surjective. A bijective function is a bijection.

A function is bijective if and only if every possible image is mapped to by exactly one argument (pre-image),
$\forall y \in B, \exists!x \in A, y=f(x)$.
A function $A \xrightarrow{f} B$ is bijective if and only if it is invertible, that is, there exists a function $g, B \xrightarrow{g} A$ such that $\forall x \in A, g(f(x))=x$, and $\forall y \in B, f(g(y))=y$. Such a function is called inverse of f and denoted $g=f^{-1}$. This function maps each pre-image to its unique image. In other words, $g \circ f=g(f(x))$ is an identity function on A, and $f \circ g=f(g(y))$ is an identity function on B.

Bijections provide a way of comparing and identifying different sets. In particular, if there exists a bijection f between two finite sets A and B, then $|A|=|B|$.
Exercise 1. Show that $f: A \xrightarrow{f} B$ is not injective exactly when one can find $x_{1}, x_{2} \in A$ such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Exercise 2. Let : $A \xrightarrow{f} B$ and $g: B \xrightarrow{f} C$ be bijections. Prove that the composition $g \circ f: A \xrightarrow{g \circ f} C$, defined by $g \circ f(x)=g(f(x))$, is also a bijection, and that so is $(g \circ f)^{-1}=(f)^{-1} \circ(g)^{-1}$.

Exercise 3. Construct bijections between the following sets:

1. (subsets of the set $\{1, \ldots, n\}) \leftrightarrow$ (sequences of zeros and ones of length n)
2. (5-element subsets of $\{1, \ldots, 15\}) \leftrightarrow(10$-element subsets of $\{1, \ldots, 15\})$
3. [set of all ways to put 10 books on two shelves (order on each shelf matters) $] \leftrightarrow$ (set of all ways of writing numbers $1,2, \ldots, 11$ in some order) [Hint: use numbers $1 . . .10$ for books and 11 to indicate where one shelf ends and the other begins.]
4. (all integer numbers) \leftrightarrow (all even integer numbers)
5. (all positive integer numbers) \leftrightarrow (all integer numbers)
6. (interval $(0,1)) \leftrightarrow($ interval $(0,5))$
7. (interval $(0,1)) \leftrightarrow($ halfline $(1, \infty))$ [Hint: try $1 / x$.]
8. $($ interval $(0,1)) \leftrightarrow($ halfline $(0, \infty))$
9. (all positive integer numbers) \leftrightarrow (all integer numbers)

Exercise 4. Let A be a finite set, with 10 elements. How many bijections f : $A \rightarrow A$ are there? What if A has n elements?

Exercise 5 . Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $f(n)=2 n$. Is this function injective? surjective?

