Algebra.

Solutions to some homework problems.

1. Problem. Write the first few terms in the following sequence $(n \geq 1)$,

$$
n \text { fractions }\left\{\begin{array}{l}
\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots} 1}} \\
\ldots+\frac{1}{1+x}
\end{array}=f_{n}\right.
$$

a. Try guessing the general formula of this fraction for any n.
b. Using mathematical induction, try proving the formula you guessed.

Solution. $n=1: f_{1}=\frac{1}{1+x} ; n=2: f_{2}=\frac{1}{1+\frac{1}{1+x}}=\frac{1+x}{2+x} ; n=3, f_{3}=\frac{1}{1+\frac{1}{1+\frac{1}{1+x}}}=$
$\frac{2+x}{3+2 x} ; n=4, f_{4}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+x}}}}=\frac{3+2 x}{5+3 x} ; f_{5}=\frac{5+3 x}{8+5 x} ; \ldots$.
From the definition, we can write the recurrence, $f_{n+1}=\frac{1}{1+f_{n}}$. We note, that if $f_{n}=\frac{a_{n}+b_{n} x}{c_{n}+d_{n} x}$, then $f_{n+1}=\frac{c_{n}+d_{n} x}{\left(a_{n}+c_{n}\right)+\left(b_{n}+d_{n}\right) x}$. Hence, in each next term, f_{n+1}, in the sequence, the numerator is equal to the denominator of the previous term, f_{n}, while the numbers in the denominator are the sums of the corresponding numbers in the numerator and the denominator of the previous term, f_{n}, thus forming the Fibonacci sequence, $\left\{F_{n}\right\}=$ $\{1,1,2,3,5,8,13, \ldots\}$. We can thus guess,
a. n fractions: $f_{1}=\frac{1}{1+x}, f_{n}=\frac{F_{n}+F_{n-1} x}{F_{n+1}+F_{n} x}, n>1$
b. Base: $f_{2}=\frac{1+x}{1+2 x}$

Induction: Using the recurrence implied in the definition,

$$
f_{n+1}=\frac{1}{1+f_{n}}=\frac{1}{1+\frac{F_{n}+F_{n-1} x}{F_{n+1}+F_{n} x}}=\frac{F_{n+1}+F_{n} x}{F_{n+1}+F_{n}+F_{n} x+F_{n-1} x}=\frac{F_{n+1}+F_{n} x}{F_{n+2}+F_{n+1} x} .
$$

2. Problem. Can you prove that,
a.

$$
\frac{3+\sqrt{17}}{2}=3+\frac{2}{3+\frac{2}{3+\frac{2}{3+\cdots}}} ?
$$

b. $1=3-\frac{2}{3-\frac{2}{3-\frac{2}{3-\cdots}}}$?
C.

$$
\frac{4}{2+\frac{4}{2+\frac{4}{2+\cdots}}}=1+\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots}}} ?
$$

Find these numbers?
Solution. Consider a general continued fraction,

$$
x=a+\frac{b}{a+\frac{b}{a+\frac{b}{a+\cdots}}}
$$

If a number exists, which is equal to the above infinite continued fraction, then it must satisfy the equation, $x=a+\frac{b}{x} \Leftrightarrow x^{2}-a x-b=0$ $\Leftrightarrow x=\frac{a}{2} \pm \sqrt{\left(\frac{a}{2}\right)^{2}+b}$. If a and b are positive, then x must also be positive, so $x=\frac{a}{2}+\sqrt{\left(\frac{a}{2}\right)^{2}+b}$.
a. Following the above argument with $a=3, b=2$, we obtain,
$x=\frac{3}{2}+\sqrt{\left(\frac{3}{2}\right)^{2}+2}=\frac{3+\sqrt{17}}{2}$
b. In this case, $a=3$, but $b=-2$ is negative. Applying the above considerations naively, we obtain, $x=3-\frac{2}{x} \Leftrightarrow x^{2}-3 x+2=0$ $\Leftrightarrow(x-1)(x-2)=0$, i.e. there are two equally "legitimate" answers, $x=1$, or $x=2$. What this means, is that assumption that there exist unique number encoded by the given infinite continued fraction is wrong: there exist no such number! In fact, this can also be understood by looking at finite truncations approximating this
continued fraction. If the continued fraction is truncated after subtracting 2 and before division by 3 , then it is equal to 1 , $3-\frac{2}{3-2}=1,3-\frac{2}{3-\frac{2}{3-2}}=1, \ldots$.

If, on the other hand, the truncation is after division by 3 and before subtracting 2 , then we obtain a sequence of numbers approaching 2 ,
$3-\frac{2}{3}=2 \frac{1}{3}, 3-\frac{2}{3-\frac{2}{3}}=2 \frac{1}{7}, 3-\frac{2}{3-\frac{2}{3-\frac{2}{3}}}=2 \frac{1}{15}, \ldots$.
c. Denote

$$
x=\frac{4}{2+\frac{4}{2+\frac{4}{2+\cdots}}}=\frac{4}{2+x}
$$

Then, $x^{2}+2 x-4=0 \Leftrightarrow x=-1 \pm \frac{\sqrt{5}}{2}$, and $x>0$. Hence, $x=-1+\frac{\sqrt{5}}{2}$.

Similarly, denote

$$
y=\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots}}}=\frac{1}{4+y}
$$

Then, $y^{2}+4 y-1=0 \Leftrightarrow y=-2 \pm \frac{\sqrt{5}}{2}$, and $y>0$. Hence, $y=-2+\frac{\sqrt{5}}{2}$, and $1+y=-1+\frac{\sqrt{5}}{2}=x$.

