Algebra.

Solutions to some homework problems.

1. **Problem.** Write the first few terms in the following sequence $(n \ge 1)$,

$$n \ fractions \begin{cases} \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots + \frac{1}{1 + x}}}}} \\ \dots + \frac{1}{1 + x} = f_n \end{cases}$$

- a. Try guessing the general formula of this fraction for any *n*.
- b. Using mathematical induction, try proving the formula you guessed.

Solution.
$$n = 1$$
: $f_1 = \frac{1}{1+x}$; $n = 2$: $f_2 = \frac{1}{1+\frac{1}{1+x}} = \frac{1+x}{2+x}$; $n = 3$, $f_3 = \frac{1}{1+\frac{1}{1+\frac{1}{1+x}}} = \frac{2+x}{3+2x}$; $n = 4$, $f_4 = \frac{1}{1+\frac{1}{1+\frac{1}{1+x}}} = \frac{3+2x}{5+3x}$; $f_5 = \frac{5+3x}{8+5x}$;

From the definition, we can write the recurrence, $f_{n+1} = \frac{1}{1+f_n}$. We note, that if $f_n = \frac{a_n+b_nx}{c_n+d_nx}$, then $f_{n+1} = \frac{c_n+d_nx}{(a_n+c_n)+(b_n+d_n)x}$. Hence, in each next term, f_{n+1} , in the sequence, the numerator is equal to the denominator of the previous term, f_n , while the numbers in the denominator are the sums of the corresponding numbers in the numerator and the denominator of the previous term, f_n , thus forming the Fibonacci sequence, $\{F_n\} = \{1, 1, 2, 3, 5, 8, 13, \dots\}$. We can thus guess,

a.
$$n \ fractions: f_1 = \frac{1}{1+x}, f_n = \frac{F_n + F_{n-1}x}{F_{n+1} + F_n x}, n > 1$$

b. Base: $f_2 = \frac{1+x}{1+2x}$

Induction: Using the recurrence implied in the definition,

$$f_{n+1} = \frac{1}{1+f_n} = \frac{1}{1+\frac{F_n + F_{n-1}x}{F_{n+1} + F_n x}} = \frac{F_{n+1} + F_n x}{F_{n+1} + F_n + F_n x + F_{n-1} x} = \frac{F_{n+1} + F_n x}{F_{n+2} + F_{n+1} x}.$$

- 2. Problem. Can you prove that,
 - a. $\frac{3+\sqrt{17}}{2} = 3 + \frac{2}{3+\frac{2}{3+\frac{2}{3+\frac{2}{3+\frac{2}{3+\cdots}}}}}?$ b. $1 = 3 - \frac{2}{3-\frac{2}{3-\frac{2}{3-\frac{2}{3-\cdots}}}}?$ c. $\frac{4}{2+\frac{4}{2+\frac{4}{2+\frac{4}{2+\cdots}}}} = 1 + \frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots}}}}?$

Find these numbers?

Solution. Consider a general continued fraction,

$$x = a + \frac{b}{a + \frac{b}{a + \frac{b}{a + \cdots}}}$$

If a number exists, which is equal to the above infinite continued fraction, then it must satisfy the equation, $x = a + \frac{b}{x} \Leftrightarrow x^2 - ax - b = 0$ $\Leftrightarrow x = \frac{a}{2} \pm \sqrt{\left(\frac{a}{2}\right)^2 + b}$. If *a* and *b* are positive, then *x* must also be positive, so $x = \frac{a}{2} + \sqrt{\left(\frac{a}{2}\right)^2 + b}$.

a. Following the above argument with a = 3, b = 2, we obtain,

$$x = \frac{3}{2} + \sqrt{\left(\frac{3}{2}\right)^2 + 2} = \frac{3 + \sqrt{17}}{2}$$

b. In this case, a = 3, but b = -2 is negative. Applying the above considerations naively, we obtain, $x = 3 - \frac{2}{x} \Leftrightarrow x^2 - 3x + 2 = 0$ $\Leftrightarrow (x - 1)(x - 2) = 0$, i.e. there are two equally "legitimate" answers, x = 1, or x = 2. What this means, is that assumption that there exist unique number encoded by the given infinite continued fraction is wrong: there exist no such number! In fact, this can also be understood by looking at finite truncations approximating this continued fraction. If the continued fraction is truncated after subtracting 2 and before division by 3, then it is equal to 1,

$$3 - \frac{2}{3-2} = 1, 3 - \frac{2}{3-\frac{2}{3-2}} = 1, \dots$$

If, on the other hand, the truncation is after division by 3 and before subtracting 2, then we obtain a sequence of numbers approaching 2,

$$3 - \frac{2}{3} = 2\frac{1}{3}, 3 - \frac{2}{3 - \frac{2}{3}} = 2\frac{1}{7}, 3 - \frac{2}{3 - \frac{2}{3 - \frac{2}{3}}} = 2\frac{1}{15}, \dots$$

c. Denote

$$x = \frac{4}{2 + \frac{4}{2 + \frac{4}{2 + \dots}}} = \frac{4}{2 + x}$$

Then, $x^2 + 2x - 4 = 0 \Leftrightarrow x = -1 \pm \frac{\sqrt{5}}{2}$, and x > 0. Hence, $x = -1 + \frac{\sqrt{5}}{2}$.

Similarly, denote

$$y = \frac{1}{4 + \frac{1}{4 + \frac{1}{4 + \dots}}} = \frac{1}{4 + y}$$

Then, $y^2 + 4y - 1 = 0 \Leftrightarrow y = -2 \pm \frac{\sqrt{5}}{2}$, and y > 0. Hence, $y = -2 + \frac{\sqrt{5}}{2}$, and $1 + y = -1 + \frac{\sqrt{5}}{2} = x$.