Homework for November 19, 2017.

Geometry.

Review the last classwork handout on solving problems using mass points and the center of mass. Solve the unsolved problems from previous homeworks. Try solving the following problems.

Problems.

1. Prove Menelaus theorem for the configuration shown on the right using mass points. Menelaus theorem states,

Points C^{\prime}, A^{\prime} and B^{\prime}, which belong to the lines containing the sides $A B, B C$ and $C A$, respectively, of triangle $A B C$ are collinear if and only if, $\left.\frac{\left|A C^{\prime}\right|}{\left|C^{\prime} B\right|} \frac{\left|B A^{\prime}\right|}{\left|A^{\prime} C\right|} \right\rvert\, \frac{\left|B^{\prime}\right|}{\left|B^{\prime} A\right|}=1$

2. Prove the extended Ceva theorem (i) using mass points and the center of mass and (ii) using the similarity of triangles. Extended Ceva theorem states,

Segments (Cevians) connecting vertices A, B and C, with points A^{\prime}, B^{\prime} and C^{\prime} on the sides, or on the lines that suitably extend the sides $B C$, $A C$, and $A B$, of triangle $A B C$, are concurrent if and only if, $\frac{\left|A C^{\prime}\right|}{\left|C^{\prime} B^{\prime}\right|}\left|\frac{B A^{\prime} \mid}{\left|A^{\prime} C\right|}\right| \frac{\left|C B^{\prime}\right|}{\left|B^{\prime} A\right|}=1$.

3. In a triangle $A B C, A^{\prime}, B^{\prime}$ and C^{\prime} are the tangent points of the inscribed circle and the sides $B C, A C$, and $A B$, respectively (see Figure). Prove that cevians $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent (their common point F is called the Gergonne point).
4. Points P and Q on the lateral sides $A B$ and $B C$ of an isosceles triangle $A B C$ divide these
 sides into segments whose lengths have ratios $|A P|:|P B|=n$, and
$|B Q|:|Q C|=n$. Segment $P Q$ crosses altitude $B B^{\prime}$ at point M. What is the ratio $|B M|:\left|M B^{\prime}\right|$ of two segments into which $P Q$ divides the altitude $B B^{\prime}$?
5. Prove that in a right triangle, each side of the right angle is the geometric mean between the whole hypotenuse and its projection onto the hypotenuse. That is, if $B D$ is the altitude from the vertex of the right angle, $A B C$, onto the hypotenuse, $A C$, then $|A B|^{2}=$ $|A C||A D|$.
6. Prove that three medians in a triangle divide it into six smaller triangles of equal area.

Algebra.

Review the classwork handout. Solve the remaining problems from the previous homework assignments and classwork exercises. Try solving the following problems.

1. Verify that a set of eight numbers, $\{1,2,3,5,6,10,15,30\}$, where addition is identified with obtaining the least common multiple,

$$
m+n \equiv \operatorname{LCM}(n, m)
$$

multiplication with the greatest common divisor,

$$
m \cdot n \equiv G C D(n, m)
$$

$m \subset n$ to mean " m is a factor of n ",

$$
m \subset n \equiv(n=0 \bmod (m))
$$

and

$$
n^{\prime} \equiv 30 / n
$$

satisfies all laws of the set algebra.
2. Using definitions from the classwork handout, devise logical arguments proving each of the following properties of algebra and partial ordering operations on sets and draw Venn diagrams where possible.
a. $\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=\mathrm{A} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{C}$
b. $A+(B \cdot C)=(A+B) \cdot(A+C)$
c. $(A \subset B) \Leftrightarrow A+B=B$
d. $(A \subset B) \Leftrightarrow A \cdot B=A$
e. $(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
f. $(A \cdot B)^{\prime}=A^{\prime}+B^{\prime}$
g. $(A \subset B) \Leftrightarrow\left(B^{\prime} \subset A^{\prime}\right)$
h. $(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
i. $\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(A^{\prime}+B\right)^{\prime}=A$
3. Rewrite the following properties of set algebra and partial ordering operations on sets in the form of logical propositions, following the first example.
a. $[A \cdot(B+C)=A \cdot B+A \cdot C] \Leftrightarrow[(x \in A) \wedge((x \in B) \vee(x \in C))]=$ $[((x \in A) \wedge(x \in B)) \vee((x \in A) \wedge(x \in C))]$
b. $A+(B \cdot C)=(A+B) \cdot(A+C)$
c. $(A \subset B) \Leftrightarrow A+B=B$
d. $(A \subset B) \Leftrightarrow A \cdot B=A$
e. $(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
f. $(A \cdot B)^{\prime}=A^{\prime}+B^{\prime}$
g. $(A \subset B) \Leftrightarrow\left(B^{\prime} \subset A^{\prime}\right)$
h. $(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
i. $\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(A^{\prime}+B\right)^{\prime}=A$
4. Four digits $1,2,3,4$, are written down in random order. Find probability that at least one digit will occupy its ordered place? What is the probability for five digits? What is the probability for n digits?
5. Write the first few terms in the following sequence ($n \geq 1$),

$$
n \text { fractions }\left\{\begin{array}{c}
\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} \\
\ldots+\frac{1}{1+x}
\end{array}=?\right.
$$

a. Try guessing the general formula of this fraction for any n.
b. Using mathematical induction, try proving the formula you guessed.
6. Can you prove that,
a.

$$
\frac{3+\sqrt{17}}{2}=3+\frac{2}{3+\frac{2}{3+\frac{2}{3+\cdots}}} \text { ? }
$$

b. $1=3-\frac{2}{3-\frac{2}{3-\frac{2}{3 \ldots}}}$?
c.

$$
\frac{4}{2+\frac{4}{2+\frac{4}{2+\cdots}}}=1+\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots}}} \text { ? }
$$

Find these numbers?

