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Geometry.  

The Method of the Center of Mass (mass points): Solving problems using the 

Law of Lever (mass points). Menelaus theorem. Pappus theorem.  

 

Theorem (Law of Lever).  Masses (weights) balance at distances from the 

fulcrum, which are inversely proportional to their magnitudes,  

 

 
 

 

 
 

 
       

For commensurate masses,                  , the Law was proven 

using the main “trick” of the mass points method: each of the two masses is 

split into    and    smaller masses,    , respectively, which are then re-

positioned in pairs around the original masses so that positions of the center 

of mass (COM) for each of the two original masses do not change, but the COM 

position for the whole system becomes obvious.   

In order to prove the Law of Lever for incommensurate masses, we first make 

the following observation.  

Lemma. If two commensurate masses   and   are placed at distances   and 

  from the fulcrum, respectively, then   goes up if and only if      ,  

            
 

         

First, if distances   and   are incommensurate, we move mass   slightly, to a 

position    which is commensurate with  , but such that   still rises up. 

Therefore, we only need to consider case when   and   are commensurate. 
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Since   rises up, we need to increase mass   to achieve balance. Let      

be such that     and   balance. Using the Law of Lever for commensurate 

masses we have,     
 

 
 (because distances are commensurate, so are the 

masses). Since       
 

 
, it follows  that      . Conversely, if 

      we can increase it to     
 

 
, which balances  . Decreasing mass 

from back to   will cause it to rise.  

Corollary. The converse statement immediately follows via excluded middle, 

             
 

         

Proof  (case of incommensurate masses). Let now two incommensurate 

masses   and  , be placed at distances   and   from the fulcrum, 

respectively, such that the Law of Lever is satisfied,      . Assume that 

the masses nevertheless do not balance, for example,   goes down. Decrease 

mass   by a small amount, turning it into   , such that it still goes down, but 

is now commensurate with  . Now   and    are commensurate, and 

      , which means that    should rise. This contradicts our assumption, 

so   and   must balance. Note that in the above we used a non-trivial fact 

that a commensurate mass, or distance can be found that differs from the 

given incommensurate one by an arbitrarily small amount. This means that 

for any irrational number there exists a rational number, which differs from it 

as little as we want, i. e. that rational numbers are dense.  

  



Solving problems using the Law of Lever. 

For the objects in the uniform gravitational field, the Center of Gravity and the 

Center of Mass are equivalent. Archimedes uses the concept by considering 

bodies with the uniform density and defining the Center of Gravity based on 

postulated properties. 

Heuristic Definitions of the Center of Mass (Center of Gravity) known to Greeks.  

1. The point such that if suspended at it, an 

object will remain motionless in the 

equilibrium, independent of the position that 

it is placed. 

2. The point common to all the lines passing 

through the point at which the object is 

suspended 

3. The point common to all lines on which the 

object balances. 

Archimedes’ postulates on the properties of the Center of Gravity (COM).  

1. The COM of similar figures are similarly situated.  

2. The COM of a convex figure lies within the figure. 

3. If an object is cut in two pieces, then its COM 

lies on the line joining the COM’s of the 

pieces, and its position satisfies the Law of 

Lever. 

However, the situation is much simpler if we only consider point masses.  

Properties of the Center of Mass for a system of point masses. 

1. Every system of finite number of point masses has unique center of 
mass (COM).  

2. For two point masses,    and   , the COM belongs to the segment 
connecting these points; its position is determined by the Archimedes 



lever rule: the point’s mass times the distance from it to the COM is the 
same for both points,          .  

3. The position of the system’s center of mass does not change if we move 
any subset of point masses in the system to the center of mass of this 
subset. In other words, we can replace any number of point masses with 
a single point mass, whose mass equals the sum of all these masses and 
which is positioned at their COM.  

Solving problems using the COM.  

Given a system of points and lines, one can derive various relations, such as 

concurrence of particular lines connecting some of the points, or the ratio of 

the lengths of different segments by associating certain masses with these 

points (i.e. placing point masses at their positions) and considering the center 

of mass of the obtained system of mass points.  

Exercise. Prove that the medians of an arbitrary triangle 

    are concurrent (cross at the same point  ).  

Exercise. Prove that the bisectors of an arbitrary triangle 

    are concurrent (cross at the same point  ).  

 

COM solutions of the selected homework problems. 

1. Problem. Prove that medians of a triangle divide one another in the ratio 

 :1  in other words  the medians of a triangle “trisect” one another 

(Coxeter, Gretzer, p.8). 

Solution. Load vertices  ,   and   with equal masses,  . Then, the 

center of mass (COM) of the three masses is at the intersection of the 

three medians, because it has to belong to each segment connecting the 

mass at the vertex of the triangle with the COM of the other two masses, 

i.e. the middle of the opposite side. COM this belongs to all three 

medians and is the centroid,   of the triangle. It divides each median in 
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the 2:1 ratio because it is a COM of mass   at the vertex and a mass    

at the middle of the opposite side.   

  

2. Problem. In isosceles triangle     point   divides the 

side    into segments such that     :      1:  . If    

is the altitude of the triangle and point   is the 

intersection of    and   , find the ratio      to     .  

Solution.  

a. Using the similarity and Thales theorem. First, let us 

perform a supplementary construction by drawing 

the segment    parallel to   ,       , where point 

  belongs to the side   , and point   to    and the 

altitude   . Notice the similar triangles,        , 

which implies, 
    

    
 

    

    
. By Thales theorem, 
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, so that 
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because 
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. Therefore, the 

sought ratio is, 
    

    
 

 

 
.  

b. Using the Method of the Center of Mass. Load vertices  ,   and   

with masses   ,   , and  , respectively. Then,   is the COM of 

masses at   and  , and   is the COM of masses at   and  , and   is 

the COM of all 3 masses in the vertices of the triangle    . Therefore, 

|   :             :   : 1,     :      1:  .  

3. Problem. Point   belongs to the continuation 

of side    of the triangle     such that 

           . Point   belongs to side   , and 

            . Segment    intercepts side 

   at point  . Find the ratio     :     .   
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Solution.  

a. Using the similarity and Thales theorem. First, let us perform a 

supplementary construction by drawing the segment    parallel to 

  ,       , where   belongs to the side    

of the triangle    .    is the mid-line of the 

triangle    , and, by Thales, also of     

and    . Therefore,      
 

 
    , 

     
 

 
     and      

 

 
    , so 

    

    
 

    

    
  . On the other hand, again, by 

Thales, or, noting similar triangles 

       , 
    

    
 

    

    
  

    

    
 

 

 
.  

b. Using the Method of the Center of Mass. Load vertices  ,   and   

with masses   ,   and  , respectively. Then,   is the center of mass 

(COM) of   and  ,   is the COM of   and  ,  and   is the COM of the 

triangle    ,     :            :      :  .  

 

  

A

B

C

O

F

D

E G



Theorem (Extended Ceva). Segments (Cevians) 

connecting vertices  ,   and  , with points   ,    

and    on the sides, or on the lines that suitably 

extend the sides   ,   , and   , of triangle    , 

are concurrent if and only if,  

     

     

     

     

     

     
 1 

Proof. We have already proven this theorem for the case when points   ,    

and    lie on the sides, but not on the lines extending the sides as it is shown in 

the figure. Let us now consider this latter case. Let us first load points   , B 

and    with masses    ,    and     such that point   is the center of mass for 

   and    ,                , and point   is the COM for     and   , 

            
   . Then, the COM of all three masses at the vertices of the 

triangle       is at the point  , which is the intersection of     and    . Let 

   cross side    at point   . Adding mass to vertex   would move the COM of 

the three masses along line   , because the COM of the initial 3 masses is at  . 

Let us add another mass    to vertex B, so that the total mass at this vertex is 

   .The resulting system of masses then has the same COM as two masses, 

       and        at points   and  , respectively. This COM is common 

to    and   , and therefore is at point   , so                    

      
   . Hence, we obtain, 
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Theorem (Menelaus). Points   ,    and    on the sides, or on the lines that 

suitably extend the sides   ,   , and   , of triangle ABC, are collinear 

(belong to the same line) if and only if,  

     

     

     

     

     

     
 1 

Menelaus's theorem provides a criterion for 

collinearity, just as Ceva's theorem provides a 

criterion for concurrence.  

Proof (similarity). The statement could be proven 

with, or without using the method of point masses.  

First, assume the points are collinear and consider 

rectangular triangles obtained by drawing 

perpendiculars onto the line A’B’. Using their 

similarity, one has 

     

     
 

  

  
 
     

     
 

  

  
 
     

     
 

  

  
 

Wherefrom the statement of the theorem is obtained by multiplication 

(Coxeter & Greitzer).  

Proof (point masses). Alternatively, let us load points  ,    and   in the upper 

Figure with the point masses   ,    and   , respectively. We select   ,    

and    such that    is the COM of       and      , and   is the COM of 

        and      . The COM of all 3 masses belongs to both segments    and 

    , which means that it is at point   . Then, 

     

     
 

  

     
 
     

     
 

  

  
 
     

     
 

     

  
 

Wherefrom the Menelaus theorem is obtained by multiplication. The case 

shown in the lower figure is considered in a similar way.   
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Theorem (Pappus). If A, C, E are three points on one line, B, D and F on 

another, and if three lines, AB, CD, EF, meet DE, FA, BC, respectively, then the 

three points of intersection, L, M, N, are 

collinear.  

This is one of the most important theorems in 

planimetry, and plays important role in the 

foundations of projective geometry. There are 

a number of ways to prove it. For example, 

one can consider five triads of points, LDE, 

AMF, BCN, ACE and BDF, and apply Menelaus 

theorem to each triad. Then, appropriately dividing all 5 thus obtained 

equations, we can obtain the equation proving that LMN are collinear, too, 

also by the Menelaus theorem. However, one can prove the Pappus theorem 

directly, using the method of point masses.  

Instead of simply proving the theorem, consider the following problem.  

Problem. Using only pencil and straightedge, continue the line to the right of 

the drop of ink on the paper without 

touching the drop. 

 Solution by the Method of the Center of Mass. 

Construct a triangle OAB, which encloses the drop, and with the vertex O on 

the given line (OD). Let O1 be the crossing point of (OD) and the side AB. Let 

us now load vertices A and B of the triangle with point masses mA and mB, 

such that their center of mass (COM) is at the point O1. Then, each point of the 

(Cevian) segment OO1 is the center of mass of the triangle OAB for some point 

mass mO loaded on the vertex O. The (Cevian) segments from vertices A and B, 

which pass through the center of mass of the triangle C, connect each of these 

vertices with the center of mass of the other two vertices on the opposite side 

of the triangle, OB and OA, respectively.  

For the mass mO1 loaded on the vertex O, the center of mass of the triangle is 

C1, and the centers of mass of the sides OA and OB are A1 and B1, respectively. 
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Similarly, C2, A2 and B2 are those for the mass mO2 on the vertex O. The center 

of mass of the side AB is always at the point O1, independent of mass mO.  

If we can show that segments A1B2 and A2B1 cross the given line (OD) at the 

same point, D, then our problem is solved, as we can draw Cevians BA2 and 

AB2, whose crossing points are on the segment OO1 on the other side of the 

drop, by sequentially drawing Cevians BA1 and AB1 and segments A1B2, B1A2, 

Figure 1(a). 

Let us load vertices O, A and B with masses mO1+ mO2, 2mA and 2mB, 

respectively, Figure 1(b). The center of mass of OAB is now at some point C, 

in-between C1 and C2 (actually, it is not important where it is on the line OO1). 

Let us now move point masses mO1 and mA to their center of mass A1 on the 

side OA, mO2 and mB to their center of mass B2 on the side OB, and mA and mB 

to their center of mass O1 on the side AB. Now masses are at the vertices of the 

triangle A1B2O1 with the same center of mass, C, Figure 1(c). Consequently, the 

crossing point D of segments A1B2 and OO1 is the center of mass for masses 

mO1+mA and mO2+mB placed at points A1 and B2, respectively. Point C then is 

the center of mass for mO1+mO2+mA +mB at point D and mA +mB at point O1, 

Figure 1(e). Repeating similar arguments for the triangle A2B1O1, Figure 

1(d,f), we see that point D is also the crossing point of segments A1B2 and OO1. 

Therefore, D is the crossing point of all three segments, A1B2, A2B1 and OO1, 

which completes the proof. 
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