## Compositions of transformations

Theorem 1. Let $l, m$ be two intersecting lines. Then the composition of two reflections $R_{l}, R_{m}$ is a rotation: $R_{l} \circ R_{m}=R_{O, 2 \varphi}$, where $O$ is the intersection point of $l, m$ and $\varphi$ is the angle between them.


Proof. Since reflections preserve distances, $O P=O P^{\prime}=O P^{\prime \prime}$. Since the triangle $O P P^{\prime}$ is isosceles, the two angles labeled by $x$ in the figure are equal; similarly the two angles labeled by $y$ are equal. Therefore, $\angle P O P^{\prime \prime}=2 x+2 y=2(x+y)=2 \varphi$.

Theorem 2. Let $l, m$ be two parallel line which are distance d apart. Then $R_{l} \circ R_{m}$ is a translation by distance $2 d$.


Proof of this theorem is left to you as a homework exercise.
Theorem 3. Composition of a reflection $R_{l}$ and translation $T_{\vec{v}}$ in a direction perpendicular to $l$ is again a reflection: $T_{\vec{v}} T_{l}=T_{m}$, where $m$ is a line parallel to $l$.

Proof. Let $m$ be a line parallel to $l$ and such the distance between them is half of length of $\vec{v}$. Then, by the previous theorem, one can write $T_{\vec{v}}=T_{m} T_{l}$. Thus, $T_{\vec{v}} T_{l}=T_{m} T_{l} T_{l}=T_{m}$.

Theorem 4. Let $R_{O_{1}, \varphi_{1}}, R_{O_{2}, \varphi_{2}}$ be two rotations with different center $O_{1}, O_{2}$. Then the composition $R_{O_{1, \varphi_{1}}} R_{O_{2, \varphi_{2}}}$ is either a rotation or a translation.

Proof. See homework problem 6 below.

## SLide reflections and classification

It turns out that there is one more type of isometry not discussed last time.
Slide reflection: Let $\vec{v}$ be a vector parallel to line $l$. Then the slide reflection is defined as composition $T_{\vec{v}} R_{l}$.


Theorem. Any isometry of the plane is one of the four types listed before: rotation, reflection, translation, slide translation.

In particular, it means that composing two transformations from this list, we again get a transformation from this list.

## Homework

In all of these problems, you can use a calculator to compute sines and cosines.

1. Two radars $P, Q$ are tracking an airplane $A$. The elevation angles (i.e., angle between the horizontal and the line to the airplane) are shown in the figure below. If the distance between the radars in 20 km , what is the altitude of the airplane? [Use law of sines!]

2. Prove Theorem 2. You only need to prove that $P P^{\prime \prime}$ is perpendicular to $l$ and has length $2 d$.
3. (a) Let $l$ be the line $x=1$. Find where the reflection $R_{l}$ would send points $(2,3) ;(5,0)$. Write the general formula: where it would send the point $(x, y)$ ? [Hint: it may help if you write $x=1+a$.]
(b) Same questions for reflection around the line $m$ given by $x=3$
(c) Compute the composition $R_{l} R_{m}$. Where would it send points $(2,3) ;(5,0) ;(x, y)$ ?
4. Prove that a composition of a reflection around line $l$ and a rotation around the point $O$ on this line is again a reflection. [Hint: use Theorem 1 to write rotation as a composition of two reflections.]
5. (a) Let $A$ be the point $(2,0)$ and let $R_{A, 90^{\circ}}$ be the 90 degree (counterclockwise) rotation around $A$. Find where this rotation would send the the following points:
$P_{1}=(4,0)$
$P_{2}=(2,5)$
$P_{3}=(3,1)$
$P_{4}=(2+\sqrt{2}, \sqrt{3})$
Can you write the general formula: where this rotation would send point $(x, y)$ ? [Hint: it may be useful to write $x$ in the form $x=2+a$.]
(b) Consider the composition $R_{l} R_{A, 90^{\circ}}$, where $l$ is the $x$-axis. FInd where it would send each of the points $P_{1}-P_{4}$ above. Can you describe what kind of transformation this composition is: is it rotation, reflection, ...? around which point or line?
6. Prove Theorem 4. Hint: let $l$ be the line through $O_{1}, O_{2}$; then one can write $R_{O_{1}, \varphi_{1}}=R_{m} R_{l}$, $R_{O_{2}, \varphi_{2}}=R_{l} R_{n}$ (note the order!) for suitably chosen lines $m, n$. Thus, $R_{O_{1}, \varphi_{1}} R_{O_{2}, \varphi_{2}}=$ $R_{m} R_{l} R_{l} R_{n}$.
7. Consider the infinite pattern shown to the right. Can you describe all symmetries of it, i.e., all isometries which do not change this picture? [Of course, there are infinitely many of them; still, you may be able to give a description like "all translations by a vector from this (infinite) set."] Will the answer change if we draw a picture (say, a smiley face) in each parallelogram? if instead of parallelograms we had squares?

