A transformation T is an operation which sends every point P of the plane to a new point, T(P).

A composition of two transformations T_1, T_2 is the operation obtained by doing first T_2 and then T_1 (note the order!):

$$T_1 \circ T_2(P) = T_1(T_2(P))$$

The identity transformation, usually denoted by I, is the one that "does nothing", i.e. sends every point to itself: I(P) = P

An inverse of the transformation T is the transformation T^{-1} such that $T^{-1} \circ T = T \circ T^{-1} = I$: if T(P) = Q, then $T^{-1}(Q) = P$.

Here are some examples of transformations:

Reflection: For any line l, the reflection R_l is defined by the condition that T(P) lies on the perpendicular from P to l, on the other side of l than P, at the same distance from l.

Rotation: For any point O and real number φ , we denote by $R_{O,\varphi}$ the counterclockwise rotation around O by the angle φ (if φ is negative, $R_{O,\varphi}$ is actually a clockwise rotation). An important special case is when $\varphi = 180^{\circ}$; in this case, this transformation is sometimes called "symmetry around point O".

Note that $R_{O,\varphi}$ only depends on φ modulo 360°: $R_{O,\varphi} = R_{O,\varphi+360^\circ}$.

Translation: Given a vector \vec{v} , we define the translation $T_{\vec{v}}$ to be the operation that adds to each point the vector \vec{v} : a point P is sent to a point P' so that $\overrightarrow{PP'} = \vec{v}$.

In other words, every point P is moved in the same direction and by the same distance, given by vector \vec{v} .

In fact, these transformations have some special property:

A transformation is an isometry if it preserves distances: for any points P, Q, we have T(P)T(Q) = PQ

Theorem.

- 1. Reflections, rotations, and translations are isometries.
- **2.** Any isometry sends lines to lines: if l is a line and T an isometry, then T(l) is again a line.
- **3.** Composition of isometries is again an isometry

We will not prove it here.

Homework

In all of these problems, you can use a calculator to compute sines and cosines.

1. A ship at sea tries to determine its position by measuring azimuths of two lighthouses, A and B. ["azimuth", or bearing, is the angle between the true north direction and the ray connecting the ship to the object – in our case, the lighthouse; it is measured clockwise.]

They found the azimuth of lighthouse A to be 40° and azimuth of lighthouse B to be 70° .

If it is also known that lighthouse A is exactly 60 miles northwest of lighthouse B, can you determine the distance from the ship to each lighthouse?

[Hint: use law of sines!]

2. Let $T = R_l$ be the reflection around the x-axis. For each of the following points P, find the coordinates of the corresponding point T(P).

(a) $P_1 = (1,1)$ (b) $P_2 = (2,3)$ (c) $P_3 = (-3,0)$ (d) $P_4 = (5,-1)$

Can you write a general formula: if P = (x, y), then T(P) = ??

- **3.** Answer the same questions for reflection around the line x = y.
- 4. Answer the same questions for reflection around the line x = 1.
- **5.** Answer the same questions for 90° rotation around the origin.
- **6.** Answer the same questions for the translation $T_{\vec{v}}$, where $\vec{v} = (3, 4)$.
- *7. Let l, m be two intersecting lines. Prove that then $R_l \circ R_m = R_{O,2\varphi}$, where O is the intersection point of l, m and φ is the angle between them.

***8.** Can you guess what is a composition of a translation and a reflection? Is it a translation? reflection? neither?