Transformations of the Plane

A transformation T is an operation which sends every point P of the plane to a new point, $T(P)$.
A composition of two transformations T_{1}, T_{2} is the operation obtained by doing first T_{2} and then T_{1} (note the order!):

$$
T_{1} \circ T_{2}(P)=T_{1}\left(T_{2}(P)\right)
$$

The identity transformation, usually denoted by I, is the one that "does nothing", i.e. sends every point to itself: $I(P)=P$

An inverse of the transformation T is the transformation T^{-1} such that $T^{-1} \circ T=T \circ T^{-1}=I$: if $T(P)=Q$, then $T^{-1}(Q)=P$.

Here are some examples of transformations:
Reflection: For any line l, the reflection R_{l} is defined by the condition that $T(P)$ lies on the perpendicular from P to l, on the other side of l than P, at the same distance from l.

Rotation: For any point O and real number φ, we denote by $R_{O, \varphi}$ the counterclockwise rotation around O by the angle φ (if φ is negative, $R_{O, \varphi}$ is actually a clockwise rotation). An important special case is when $\varphi=180^{\circ}$; in this case, this transformation is sometimes called "symmetry around point O ".

Note that $R_{O, \varphi}$ only depends on φ modulo $360^{\circ}: R_{O, \varphi}=R_{O, \varphi+360^{\circ}}$.
Translation: Given a vector \vec{v}, we define the translation $T_{\vec{v}}$ to be the operation that adds to each point the vector \vec{v} : a point P is sent to a point P^{\prime} so that $\overrightarrow{P P^{\prime}}=\vec{v}$.

In other words, every point P is moved in the same direction and by the same distance, given by vector \vec{v}.
In fact, these transformations have some special property:
A transformation is an isometry if it preserves distances: for any points P, Q, we have $T(P) T(Q)=$ $P Q$

Theorem.

1. Reflections, rotations, and translations are isometries.
2. Any isometry sends lines to lines: if l is a line and T an isometry, then $T(l)$ is again a line.
3. Composition of isometries is again an isometry

We will not prove it here.

Homework

In all of these problems, you can use a calculator to compute sines and cosines.

1. A ship at sea tries to determine its position by measuring azimuths of two lighthouses, A and B. ["azimuth", or bearing, is the angle between the true north direction and the ray connecting the ship to the object - in our case, the lighthouse; it is measured clockwise.]

They found the azimuth of lighthouse A to be 40° and azimuth of lighthouse B to be 70°.
If it is also known that lighthouse A is exactly 60 miles northwest of lighthouse B, can you determine the distance from the ship to each lighthouse?

[Hint: use law of sines!]
2. Let $T=R_{l}$ be the reflection around the x-axis. For each of the following points P, find the coordinates of the corresponding point $T(P)$.
(a) $P_{1}=(1,1)$
(b) $P_{2}=(2,3)$
(c) $P_{3}=(-3,0)$
(d) $P_{4}=(5,-1)$

Can you write a general formula: if $P=(x, y)$, then $T(P)=$??
3. Answer the same questions for reflection around the line $x=y$.
4. Answer the same questions for reflection around the line $x=1$.
5. Answer the same questions for 90° rotation around the origin.
6. Answer the same questions for the translation $T_{\vec{v}}$, where $\vec{v}=(3,4)$.
*7. Let l, m be two intersecting lines. Prove that then $R_{l} \circ R_{m}=R_{O, 2 \varphi}$, where O is the intersection point of l, m and φ is the angle between them.

[Hint: triangles $\triangle P O P^{\prime}, \triangle P^{\prime} O P^{\prime \prime}$ are isosceles.]
*8. Can you guess what is a composition of a translation and a reflection? Is it a translation? reflection? neither?

