# MATH 7 <br> HOMEWORK 4: VECTORS - APPLICATIONS <br> OCT 5, 2014 

Relativity of velocity
The following rule is sometimes called Galileo relativity principle:
If point $A$ is moving with velocity $\vec{v}_{\text {rel }}$ relative to $B$ (i.e., observer at $B$ sees $A$ moving with this velocity) and $B$ itself is moving with velocity $\vec{v}_{B}$, then the velocity of $A$ is equal to $\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{\text {rel }}$.

It can also be used to find the relative velocity: if $A$ is moving with velocity $\vec{v}_{A}$, and $B$ with velocity $\vec{v}_{B}$, then the velocity of $A$ as seen by observer at $B$ is equal to $\vec{v}_{r e l}=\vec{v}_{A}-\vec{v}_{B}$.

## Application: Center of gravity

For a collection of points $A_{1}, \ldots, A_{n}$ and positive numbers $m_{1}, \ldots, m_{n}$ (masses placed at these points), we define the center of gravity of this collection of points to be a point $M$ such that

$$
\overrightarrow{O M}=\frac{m_{1} \overrightarrow{O A}_{1}+\cdots+m_{n} \overrightarrow{O A}_{n}}{m_{1}+m_{2}+\cdots+m_{n}}
$$

It can be shown that this definition does not depend on the choice of point $O$ : if we choose another point $O^{\prime}$ and define $M^{\prime}$ so that $\overrightarrow{O^{\prime} M^{\prime}}=\frac{m_{1} \overrightarrow{O^{\prime} A_{1}+\cdots+m_{n}} \overrightarrow{O_{1} \vec{A}_{n}}}{m_{1}+m_{2}+\cdots+m_{n}}$ then in fact $M=M^{\prime}$.

Examples:

- Center of gravity of two points $A, B$ with equal mass at them is the midpoint of the interval $A B$.
- Center of gravity of the four vertices of the parallelogram is the intersection point of its diagonals.


## Problems

1. A ship is sailing east with speed 10 mph . A person is walking on the deck of the ship going north with speed of 3 mph . What is the velocity of this person relative to the shore? Write it as a vector in the coordinate system where $y$ axis is pointing north, and $x$ axis is pointing east.
2. Consider the system of 5 points moving in the plane. At a given moment, the coordinates and velocities of these points are as shown below:

$$
A(2,0) ; \vec{v}_{A}=(4,0)
$$

$$
B(3,0) ; \vec{v}_{B}=(6,0)
$$

$$
C(0,-1) ; \vec{v}_{C}=(0,-2)
$$

$$
D(-1,1) ; \vec{v}_{D}=(-2,2)
$$

$$
E(1,3) ; \vec{v}_{E}=(2,6)
$$

(as you can see, each point is moving in a straight line away from the origin, and the velocity is proportional to the distance from the origin).

What would the observer at point $A$ see? what would be velocities of points $B, C$, $D, E$ measured from $A$ ? Draw these velocity vectors on the plane.
3. (a) Let masses $m_{1}=3, m_{2}=1$ be placed at points $A_{1}=(3,6), A_{2}=(11,2)$. Find the center of gravity of these two masses. Does it lie on the segment $A_{1} A_{2}$ ? in what proportion does it divide it?
(b) Consider the center of gravity $M$ of a system of two masses $m_{1}, m_{2}$ at points $A_{1}, A_{2}$. Prove that then $\overrightarrow{A_{1} M}=\frac{m_{2}}{m_{1}+m_{2}} \overrightarrow{A_{1} A_{2}}$. Can you write a similar formula for $\overrightarrow{M A}_{2}$ ?
(c) Prove that the center of gravity $M$ of a system of two masses $m_{1}, m_{2}$ at points $A_{1}, A_{2}$ lies on the segment $A_{1} A_{2}$ and divides it in proportion $m_{2}: m_{1}$.
4. (a) Let $M$ the center of gravity of three points $A, B, C$ with unit mass at each of them. Prove that then

$$
\overrightarrow{O M}=\frac{1}{3} \overrightarrow{O A}+\frac{2}{3} \overrightarrow{O A}_{1}
$$

where $A_{1}$ is the midpoint of $B C$.
(b) Prove that all three medians of a triangle intersect at a single point $M$ which divides each of them in proportion 2:1
${ }^{*}$ 5. Consider a triangle $\triangle A B C$ and let
(a) $A_{1}$ be the point on side $B C$ which divides it in proportion $2: 3$,
(b) $B_{1}$ be the point on side $C A$ which divides it in proportion $3: 4$,
(c) $C_{1}$ be the point on side $A B$ which divides it in proportion 2:1

Prove that the lines $A A_{1}, B B_{1}, C C_{1}$ all intersect at a single point. [Hint: this point would be the center of gravity of appropriately chosen 3 masses at points $A, B, C$.]
6. Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right), D\left(x_{4}, y_{4}\right)$ be four vertices of a quadrilateral.
(a) Write a formula for vectors $\overrightarrow{A_{1} B_{1}}, \overrightarrow{D_{1} C_{1}}$, where $A_{1}, B_{1}, C_{1}, D_{1}$ are midpoints of sides $A B, B C, C D, D A$ respectively.
(b) Prove that $\overrightarrow{A_{1} B_{1}}=\overrightarrow{D_{1} C_{1}}$
(c) Prove that in any quadrilateral, midpoints of 4 sides form a parallelogram.

