Adding and Subtracting Vectors

We can add vectors $\vec{u}+\vec{v}$ using the triangle method:

The vector $\vec{u}-\vec{v}$ can be found by using the triangle method for addition but instead of adding \vec{v}, you can add $-\vec{v}$, which is the same vector as \vec{v} but in opposite direction.

Problems

1. For any two vectors \vec{a}, \vec{b} show that $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
2. For any three vectors \vec{a}, \vec{b}, and \vec{c}, prove that $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
3. ABC is a triangle. Find the sum of the vectors $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$.
4. If M is the mid-point of the line segment PQ , then $\overrightarrow{M P}+\overrightarrow{M Q}=0$
5. ABCD is a quadrilateral. P and Q are mid-points of AB and CD respectively. Prove that $\overrightarrow{A D}+\overrightarrow{B C}=$ $2 \overrightarrow{P Q}$
6. ABC is a triangle. P is a point on the side BC such that $\mathrm{PC}=3 \mathrm{~PB}$. Show that $4 \overrightarrow{A P}=\overrightarrow{A C}+3 \overrightarrow{A B}$.
7. ABCD is a square and M, N are mid-points of $\overrightarrow{B C}$, and $\overrightarrow{C D}$ respectively. Let $\vec{u}=\overrightarrow{A M}$ and $\vec{v}=\overrightarrow{A N}$. Express $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{B D}$ in terms of \vec{u} and \vec{v}.
